Nehari's problem and competing species systems

M. Conti; S. Terracini; G. Verzini

Annales de l'I.H.P. Analyse non linéaire (2002)

  • Volume: 19, Issue: 6, page 871-888
  • ISSN: 0294-1449

How to cite

top

Conti, M., Terracini, S., and Verzini, G.. "Nehari's problem and competing species systems." Annales de l'I.H.P. Analyse non linéaire 19.6 (2002): 871-888. <http://eudml.org/doc/78564>.

@article{Conti2002,
author = {Conti, M., Terracini, S., Verzini, G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {optimal partition; extremality conditions; superlinear elliptic equations; variational problems; Lotka-Volterra systems; existence; sign changing solutions; Nehari's method},
language = {eng},
number = {6},
pages = {871-888},
publisher = {Elsevier},
title = {Nehari's problem and competing species systems},
url = {http://eudml.org/doc/78564},
volume = {19},
year = {2002},
}

TY - JOUR
AU - Conti, M.
AU - Terracini, S.
AU - Verzini, G.
TI - Nehari's problem and competing species systems
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2002
PB - Elsevier
VL - 19
IS - 6
SP - 871
EP - 888
LA - eng
KW - optimal partition; extremality conditions; superlinear elliptic equations; variational problems; Lotka-Volterra systems; existence; sign changing solutions; Nehari's method
UR - http://eudml.org/doc/78564
ER -

References

top
  1. [1] Bartsch T., Wang Z.Q., On the existence of changing sign solutions for semilinear Dirichlet problem, Topol. Methods Nonlinear Anal.7 (1997) 115-131. Zbl0903.58004MR1422008
  2. [2] Bartsch T., Wang Z.Q., Existence and multiplicity results for some superlinear elliptic problem on Rn, Comm. Partial Differential Equations20 (1995) 1725-1741. Zbl0837.35043MR1349229
  3. [3] Bartsch T., Willem M., Infinitely many radial solutions of a semilinear elliptic problem on RN, Arch. Rat. Mech. Anal.124 (1993) 261-276. Zbl0790.35020MR1237913
  4. [4] Castro A., Cossio J., Neuberger J.M., A sign-changing solution for a superlinear Dirichlet problem, Rocky Mountain J. Math.27 (1997) 1041-1053. Zbl0907.35050MR1627654
  5. [5] Castro A., Cossio J., Neuberger J.M., A minimax principle, index of critical point, and existence of sign changing solutions to elliptic boundary value problems, Electron. J. Differential Equations2 (1998). Zbl0901.35028
  6. [6] Cosner C., Lazner A., Stable coexistence in the Volterra–Lotka competition model with diffusion, SIAM J. Math. Anal.44 (1984) 1112-1132. Zbl0562.92012MR766192
  7. [7] Conti M., Merizzi L., Terracini S., Remarks on variational methods and lower-upper solutions, NoDEA6 (1999) 371-393. Zbl0941.35031MR1736543
  8. [8] Dancer E.N., Competing species systems with diffusion and large interaction, Rend. Sem. Mat. Fis. Milano65 (1995) 23-33. Zbl0884.35031MR1459414
  9. [9] Dancer E.N., On positive solutions of some pairs of differential equations, Trans. Amer. Math. Soc.284 (1984) 729-743. Zbl0524.35056MR743741
  10. [10] Dancer E.N., On positive solutions of some pairs of differential equations, II, J. Differential Equations60 (1985) 236-258. Zbl0549.35024MR810554
  11. [11] Dancer E.N., On the existence and uniqueness of positive solutions for competing species models with diffusion, Trans. Amer. Math. Soc.326 (1991) 829-859. Zbl0769.35016MR1028757
  12. [12] Dancer E.N., A counterexample on competing species equations, Differential Integral Equations9 (1996) 239-246. Zbl0842.35033MR1364045
  13. [13] Dancer E.N., On uniqueness and stability for solutions of singularly perturbed predator–prey type equations with diffusion, J. Differential Equations102 (1993) 1-32. Zbl0817.35042MR1209974
  14. [14] Dancer E.N., Du Y.H., On sign-changing solutions of certain semilinear elliptic problems, Appl. Anal.56 (1995) 193-206. Zbl0835.35051MR1383886
  15. [15] Dancer E.N., Du Y.H., Positive solutions for a three-species competition system with diffusion. I. General existence results, Nonlinear Anal.24 (1995) 337-357. Zbl0824.35033MR1312772
  16. [16] Dancer E.N., Du Y.H., Positive solutions for a three-species competition system with diffusion. II. The case of equal birth rates, Nonlinear Anal.24 (1995) 359-373. Zbl0824.35034MR1312773
  17. [17] Dancer E.N., Du Y.H., Competing species equations with diffusion, large interactions, and jumping nonlinearities, J. Differential Equations114 (1994) 434-475. Zbl0815.35024MR1303035
  18. [18] Dancer E.N., Guo Z.M., Uniqueness and stability for solutions of competing species equations with large interactions, Comm. Appl. Nonlinear Anal.1 (1994) 19-45. Zbl0935.35074MR1280113
  19. [19] Korman P., Leung A., On the existence and uniqueness of positive steady states in Lotka–Volterra ecological models with diffusion, Appl. Anal.26 (1987) 145-160. Zbl0639.35026MR921723
  20. [20] Lazer A.C., McKenna P.J., On steady state solutions of a system of reaction-diffusion equations from biology, Nonlinear Anal. TMA6 (1982) 523-530. Zbl0488.35039MR664014
  21. [21] Miranda C., Un'osservazione sul teorema di Brouwer, Boll. U.M.I. Serie II, Anno II1 (1940) 5-7. Zbl0024.02203MR4775
  22. [22] Nehari Z., Characteristic values associated with a class of nonlinear second order differential equations, Acta Math.105 (1961) 141-175. Zbl0099.29104MR123775
  23. [23] Wang Z.Q., On a superlinear elliptic equation, Ann. Inst. H. Poincaré Anal. Non Linéaire8 (1) (1991) 43-57. Zbl0733.35043MR1094651
  24. [24] Willem M., Minimax Theorems, Birkhäuser, 1996. Zbl0856.49001MR1400007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.