Upper critical field and location of surface nucleation of superconductivity

Bernard Helffer; Xing-Bin Pan

Annales de l'I.H.P. Analyse non linéaire (2003)

  • Volume: 20, Issue: 1, page 145-181
  • ISSN: 0294-1449

How to cite

top

Helffer, Bernard, and Pan, Xing-Bin. "Upper critical field and location of surface nucleation of superconductivity." Annales de l'I.H.P. Analyse non linéaire 20.1 (2003): 145-181. <http://eudml.org/doc/78571>.

@article{Helffer2003,
author = {Helffer, Bernard, Pan, Xing-Bin},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {critical field; location of the superconductivity; magnetic vector potential; Euler-Lagrange equations; minimizers},
language = {eng},
number = {1},
pages = {145-181},
publisher = {Elsevier},
title = {Upper critical field and location of surface nucleation of superconductivity},
url = {http://eudml.org/doc/78571},
volume = {20},
year = {2003},
}

TY - JOUR
AU - Helffer, Bernard
AU - Pan, Xing-Bin
TI - Upper critical field and location of surface nucleation of superconductivity
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2003
PB - Elsevier
VL - 20
IS - 1
SP - 145
EP - 181
LA - eng
KW - critical field; location of the superconductivity; magnetic vector potential; Euler-Lagrange equations; minimizers
UR - http://eudml.org/doc/78571
ER -

References

top
  1. [1] Agmon S., Lectures on Exponential Decay of Solutions of Second Order Elliptic Equations: Bounds on Eigenfunctions of N-Body Schrodinger Operators, Princeton University Press, 1982. Zbl0503.35001MR745286
  2. [2] Bauman P., Phillips D., Tang Q., Stable nucleation for the Ginzburg–Landau system with an applied magnetic field, Arch. Rational Mech. Anal.142 (1998) 1-43. Zbl0922.35157MR1629119
  3. [3] Bernoff A., Sternberg P., Onset of superconductivity in decreasing fields for general domains, J. Math. Phys.38 (1998) 1272-1284. Zbl1056.82523MR1608449
  4. [4] Bolley C., Helffer B., An application of semi-classical analysis to the asymptotic study of the supercooling field of a superconducting material, Ann. Inst. Henri Poincaré, Physique Théorique58 (1993) 189-233. Zbl0779.35104MR1217119
  5. [5] Chapman S.J., Nucleation of superconductivity in decreasing fields, European J. Appl. Math.5 (1994), part 1, 449–468; part 2, 469–494. Zbl0820.35124MR1309734
  6. [6] Chapman S.J., Howison S.D., Ockendon J.R., Macroscopic models for superconductivity, SIAM Rev.34 (1992) 529-560. Zbl0769.73068MR1193011
  7. [7] Dauge M., Helffer B., Eigenvalues variation, I, Neumann problem for Sturm–Liouville operators, J. Differential Equations104 (1993) 243-262. Zbl0784.34021MR1231468
  8. [8] De Gennes P.G., Superconductivity of Metals and Alloys, Benjamin, New York, 1966. Zbl0138.22801
  9. [9] del Pino M., Felmer P., Sternberg P., Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys.210 (2000) 413-446. Zbl0982.35077MR1776839
  10. [10] Du Q., Gunzburger M., Peterson J., Analysis and approximation of the Ginzburg–Landau model of superconductivity, SIAM Rev.34 (1992) 45-81. Zbl0787.65091MR1156289
  11. [11] Ginzburg V., Landau L., On the theory of superconductivity, Soviet Phys. JETP20 (1950) 1064-1082. 
  12. [12] Giorgi T., Phillips D., The breakdown of superconductivity due to strong fields for the Ginzburg–Landau model, SIAM J. Math. Anal.30 (1999) 341-359. Zbl0920.35058MR1664763
  13. [13] Helffer B., Semi-Classical Analysis for the Schrödinger Operator and Applications, Lecture Notes in Mathematics, 1336, Springer-Verlag, 1988. Zbl0647.35002MR960278
  14. [14] Helffer B., Mohamed A., Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal.138 (1996) 40-81. Zbl0851.58046MR1391630
  15. [15] Helffer B., Morame A., Magnetic bottles in connection with superconductivity, J. Funct. Anal.185 (2001) 604-680. Zbl1078.81023MR1856278
  16. [16] Lu K., Pan X.-B., The first eigenvalue of Ginzburg–Landau operator, in: Bates, (Eds.), Differential Equations and Applications, International Press, 1997, pp. 215-226. Zbl0935.35108MR1602638
  17. [17] Lu K., Pan X.-B., Gauge invariant eigenvalue problems in R2 and in R2+, Trans. Amer. Math. Soc.352 (2000) 1247-1276. Zbl1053.35124MR1675206
  18. [18] Lu K., Pan X.-B., Eigenvalue problems of Ginzburg–Landau operator in bounded domains, J. Math. Phys.40 (1999) 2647-2670. Zbl0943.35058MR1694223
  19. [19] Lu K., Pan X.-B., Estimates of the upper critical field for the Ginzburg–Landau equations of superconductivity, Phys. D127 (1999) 73-104. Zbl0934.35174MR1678383
  20. [20] Lu K., Pan X.-B., Surface nucleation of superconductivity in 3-dimension, J. Differential Equations168 (2000) 386-452. Zbl0972.35152MR1808455
  21. [21] Lu K., Pan X.-B., Surface nucleation of superconductivity, Methods and Applications of Analysis8 (2001) 279-300. Zbl1016.35066MR1904530
  22. [22] Saint-James D., De Gennes P., Onset of superconductivity in decreasing fields, Phys. Lett.6 (5) (1963) 306-308. 
  23. [23] Saint-James D., Sarma G., Thomas E.J., Type II Superconductivity, Pergamon Press, Oxford, 1969. 
  24. [24] Tinkham M., Introduction to Superconductivity, McGraw-Hill, New York, 1975. 

Citations in EuDML Documents

top
  1. Bernard Helffer, Abderemane Morame, Magnetic bottles for the Neumann problem : curvature effects in the case of dimension 3 (general case)
  2. Soeren Fournais, Bernard Helffer, Strong diamagnetism for general domains and application
  3. Søren Fournais, Le troisième champ critique en théorie de Ginzburg-Landau
  4. Søren Fournais, Sur le Laplacien magnétique avec condition de Neumann.
  5. Soeren Fournais, Bernard Helffer, Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.