On nonlinear Schrödinger equations in exterior domains

N Burq; P Gérard; N Tzvetkov

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 3, page 295-318
  • ISSN: 0294-1449

How to cite

top

Burq, N, Gérard, P, and Tzvetkov, N. "On nonlinear Schrödinger equations in exterior domains." Annales de l'I.H.P. Analyse non linéaire 21.3 (2004): 295-318. <http://eudml.org/doc/78620>.

@article{Burq2004,
author = {Burq, N, Gérard, P, Tzvetkov, N},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {nonlinear Schrödinger; smoothing effect; non-trapping; dispersive equations; global existence and uniqueness},
language = {eng},
number = {3},
pages = {295-318},
publisher = {Elsevier},
title = {On nonlinear Schrödinger equations in exterior domains},
url = {http://eudml.org/doc/78620},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Burq, N
AU - Gérard, P
AU - Tzvetkov, N
TI - On nonlinear Schrödinger equations in exterior domains
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 3
SP - 295
EP - 318
LA - eng
KW - nonlinear Schrödinger; smoothing effect; non-trapping; dispersive equations; global existence and uniqueness
UR - http://eudml.org/doc/78620
ER -

References

top
  1. [1] Ben Artzi M, Klainerman S, Decay and regularity for the Schrödinger equation, J. Anal. Math.58 (1992) 25-37. Zbl0802.35057MR1226935
  2. [2] Bergh J, Löfstrom J, Interpolation Spaces, Springer-Verlag, 1976. Zbl0344.46071
  3. [3] Bourgain J, Global Solutions of Nonlinear Schrödinger Equations, Colloq. Publications, American Math. Soc, 1999. Zbl0933.35178MR1691575
  4. [4] Bourgain J, Problems in Hamiltonian PDE's. GAFA 2000 (Tel Aviv, 1999), Geom. Funct. Anal. (Special Volume, Part I) (2000) 32-56. Zbl1050.35016MR1826248
  5. [5] Brézis H, Gallouet T, Nonlinear Schrödinger evolution equations, Nonlinear Anal.4 (1980) 677-681. Zbl0451.35023MR582536
  6. [6] Burq N, Contrôle de l'équation des ondes dans des ouverts peu réguliers, Asymptotic Anal.14 (1997) 157-191. Zbl0892.93009MR1451210
  7. [7] Burq N, Décroissance de l'énergie locale de l'équation des ondes pour le problème extérieur et absence de résonance au voisinage du réel, Acta Math.180 (1998) 1-29. Zbl0918.35081MR1618254
  8. [8] Burq N, Semi-classical estimates for the resolvent in nontrapping geometries, Internat. Math. Res. Notices (2002) 221-241. Zbl1161.81368MR1876933
  9. [9] N. Burq, P. Gérard, N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math., in press. Zbl1067.58027MR2058384
  10. [10] Burq N, Gérard P, Tzvetkov N, The Cauchy problem for the nonlinear Schrödinger equation on a compact manifold, Proceedings of the Öresund Symposium on Partial Differential Equations, Lund, May 23–25, 2002, J. Nonlinear Math. Phys.10 (2003) 12-27, Supplement 1. MR2063542
  11. [11] Burq N, Gérard P, Tzvetkov N, Two singular dynamics of the nonlinear Schrödinger equation on a plane domain, Geom. Funct. Anal.13 (2003) 1-19. Zbl1044.35084MR1978490
  12. [12] Burq N, Gérard P, Tzvetkov N, An example of singular dynamics for the nonlinear Schrödinger equation on bounded domains, in: Colombini F, Nishitani T (Eds.), Proceedings of the Conference on Hyperbolic PDEs and Related Topics, Cortona, 2002, submitted for publication. Zbl1210.35225MR2056842
  13. [13] Cazenave T, An introduction to nonlinear Schrödinger equations, second ed., Textos de Métodos Matemáticos26 (1993). 
  14. [14] Constantin P, Saut J.C, Local smoothing properties of dispersive equations, J. Amer. Math. Soc.1 (1988) 413-439. Zbl0667.35061MR928265
  15. [15] Constantin P, Saut J.C, Local smoothing properties of Schrödinger equations, Indiana Univ. Math. J.38 (1989) 791-810. Zbl0712.35022MR1017334
  16. [16] Christ M, Kiselev A, Maximal functions associated to filtrations, J. Funct. Anal.179 (2001) 409-425. Zbl0974.47025MR1809116
  17. [17] Doi S.I, Smoothing effects of Schrödinger evolution groups on Riemannian manifolds, Duke Math. J.82 (1996) 679-706. Zbl0870.58101MR1387689
  18. [18] Kato T, On nonlinear Schrödinger equations, Ann. Inst. H. Poincaré Phys. Théor.46 (1987) 113-129. Zbl0632.35038MR877998
  19. [19] Kavian O, A remark on the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, Trans. Amer. Math. Soc.299 (1987) 193-203. Zbl0638.35043MR869407
  20. [20] S. Keraani, Étude de quelques régimes asymptotiques de l'équation de Schrödinger, PhD Thesis, Université de Paris-Sud, December 2000. 
  21. [21] Lax P, Phillips R, Scattering Theory, Pure Appl. Math., vol. 26, Academic Press, 1989. Zbl0697.35004MR1037774
  22. [22] Lions J.-L, Quelques méthodes de résolution des équations aux dérivées partielles non linéaires, Dunod, Paris, 1969. 
  23. [23] Melrose R.B, Sjöstrand J, Singularities of boundary value problems I, Comm. Pure Appl. Math.31 (1978) 593-617. Zbl0368.35020MR492794
  24. [24] Melrose R.B, Sjöstrand J, Singularities of boundary value problems II, Comm. Pure Appl. Math.35 (1982) 129-168. Zbl0546.35083MR644020
  25. [25] Ogawa T, Ozawa T, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger equations, J. Math. Anal. Appl.155 (1991) 531-540. Zbl0733.35095MR1097298
  26. [26] Segal I, Nonlinear semi-groups, Ann. Math.78 (1963) 339-364. Zbl0204.16004MR152908
  27. [27] Sulem C, Sulem P.L, The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999. Zbl0928.35157MR1696311
  28. [28] Sjölin P, Regularity of solutions to Schrödinger equations, Duke Math. J.55 (1987) 699-715. Zbl0631.42010MR904948
  29. [29] Smith H, Sogge C, On the critical semilinear wave equation outside convex obstacles, J. Amer. Math. Soc.8 (1995) 879-916. Zbl0860.35081MR1308407
  30. [30] Staffilani G, Tataru D, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Comm. Partial Differential Equations27 (2002) 1337-1372. Zbl1010.35015MR1924470
  31. [31] Taylor M, Partial Differential Equations, Applied Mathematical Sciences, vols. 115, 116, 117, Springer-Verlag, New York, 1996. Zbl0869.35003MR1395147
  32. [32] Tsutsumi M, On smooth solutions to the initial-boundary value problem for the nonlinear Schrödinger equation in two space dimensions, Nonlinear Anal.13 (1989) 1051-1056. Zbl0693.35133MR1013309
  33. [33] Tsutsumi M, On global solutions to the initial-boundary value problem for the nonlinear Schrödinger equation in exterior domains, Comm. Partial Differential Equations16 (1991) 885-907. Zbl0738.35093MR1116848
  34. [34] Tsutsumi Y, Global solutions of the nonlinear Schrödinger equation in exterior domains, Comm. Partial Differential Equations8 (1984) 1337-1374. Zbl0542.35027MR711442
  35. [35] Vainberg B.R, Asymptotic Methods in Equations of Mathematical Physics, Gordon and Breach, New York, 1988. Zbl0743.35001MR1054376
  36. [36] Vasy A, Zworski M, Semiclassical estimates in asymptotically euclidean scattering, Comm. Math. Phys.212 (2000) 205-217. Zbl0955.58023MR1764368
  37. [37] Vega L, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc.102 (1988) 874-878. Zbl0654.42014MR934859
  38. [38] Vladimirov M.V, On the solvability of mixed problem for a nonlinear equation of Schrödinger type, Soviet Math. Dokl.29 (1984) 281-284. Zbl0585.35019

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.