On some results of Moser and of Bangert

P. H. Rabinowitz; E. Stredulinsky

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 5, page 673-688
  • ISSN: 0294-1449

How to cite

top

Rabinowitz, P. H., and Stredulinsky, E.. "On some results of Moser and of Bangert." Annales de l'I.H.P. Analyse non linéaire 21.5 (2004): 673-688. <http://eudml.org/doc/78634>.

@article{Rabinowitz2004,
author = {Rabinowitz, P. H., Stredulinsky, E.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {Monotone twist maps; Minimal heteroclinic; Aubry-Mather theory; Renormalized functional},
language = {eng},
number = {5},
pages = {673-688},
publisher = {Elsevier},
title = {On some results of Moser and of Bangert},
url = {http://eudml.org/doc/78634},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Rabinowitz, P. H.
AU - Stredulinsky, E.
TI - On some results of Moser and of Bangert
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 5
SP - 673
EP - 688
LA - eng
KW - Monotone twist maps; Minimal heteroclinic; Aubry-Mather theory; Renormalized functional
UR - http://eudml.org/doc/78634
ER -

References

top
  1. [1] Alama S., Li Y., On “multibump” bound states for certain semilinear elliptic equations, Indiana Univ. Math. J.41 (1992) 983-1026. Zbl0796.35043
  2. [2] Alessio F., Jeanjean L., Montecchiari P., Existence of infinitely many stationary layered solutions in R2 for a class of periodic Allen–Cahn equations, Comm. PDE27 (2002) 1537-1574. Zbl1125.35342MR1924477
  3. [3] Aubry S., LeDaeron P.Y., The discrete Frenkel–Kantorova model and its extensions I-Exact results for the ground states, Physica D8 (1983) 381-422. MR719634
  4. [4] Bangert V., On minimal laminations of a torus, AIHP Anal. Nonlin.6 (1989) 95-138. Zbl0678.58014MR991874
  5. [5] Coti Zelati V., Rabinowitz P.H., Homoclinic type solutions for a semilinear elliptic PDE on Rn, Comm. Pure Appl. Math.45 (1992) 1217-1269. Zbl0785.35029MR1181725
  6. [6] Giaquinta M., Guisti E., On the regularity of the minima of variational integrals, Acta Math.148 (1982) 31-46. Zbl0494.49031MR666107
  7. [7] Mather J.N., Existence of quasi-periodic orbits for twist homeomorphisms of the annulus, Topology21 (1982) 457-467. Zbl0506.58032MR670747
  8. [8] Moser J., Minimal solutions of variational problems on a torus, AIHP Anal. Nonlin.3 (1986) 229-272. Zbl0609.49029MR847308
  9. [9] Rabinowitz P.H., Stredulinsky E., Mixed states for an Allen–Cahn type equation, Comm. Pure Appl. Math.56 (2003) 1078-1134. Zbl1274.35122MR1989227
  10. [10] Séré E., Existence of infinitely many homoclinic orbits in Hamiltonian systems, Math. Z.209 (1992) 27-42. Zbl0725.58017MR1143210

Citations in EuDML Documents

top
  1. Alexander J. Zaslavski, Structure of approximate solutions of variational problems with extended-valued convex integrands
  2. Alexander J. Zaslavski, Structure of approximate solutions of variational problems with extended-valued convex integrands
  3. Alexander J. Zaslavski, A nonintersection property for extremals of variational problems with vector-valued functions
  4. Rafael de la Llave, Enrico Valdinoci, A generalization of Aubry-Mather theory to partial differential equations and pseudo-differential equations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.