The Riemann problem for a class of resonant hyperbolic systems of balance laws
Paola Goatin; Philippe G. Le Floch
Annales de l'I.H.P. Analyse non linéaire (2004)
- Volume: 21, Issue: 6, page 881-902
- ISSN: 0294-1449
Access Full Article
topHow to cite
topGoatin, Paola, and Le Floch, Philippe G.. "The Riemann problem for a class of resonant hyperbolic systems of balance laws." Annales de l'I.H.P. Analyse non linéaire 21.6 (2004): 881-902. <http://eudml.org/doc/78643>.
@article{Goatin2004,
author = {Goatin, Paola, Le Floch, Philippe G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {two characteristic speeds coincide; nozzle with discontinuous cross-section},
language = {eng},
number = {6},
pages = {881-902},
publisher = {Elsevier},
title = {The Riemann problem for a class of resonant hyperbolic systems of balance laws},
url = {http://eudml.org/doc/78643},
volume = {21},
year = {2004},
}
TY - JOUR
AU - Goatin, Paola
AU - Le Floch, Philippe G.
TI - The Riemann problem for a class of resonant hyperbolic systems of balance laws
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 6
SP - 881
EP - 902
LA - eng
KW - two characteristic speeds coincide; nozzle with discontinuous cross-section
UR - http://eudml.org/doc/78643
ER -
References
top- [1] Amadori D., Gosse L., Guerra G., Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws, Arch. Rational Mech. Anal.162 (2002) 327-366. Zbl1024.35066MR1904499
- [2] Amadori D., Gosse L., Guerra G., Godunov-type approximation for a general resonant balance law with large data, J. Differential Equations198 (2004) 233-274. Zbl1058.35156MR2038581
- [3] N. Andrianov, G. Warnecke, The Riemann problem for the Baer–Nunziato model of two-phase flows, J. Comput. Phys., in press. Zbl1115.76414
- [4] N. Andrianov, G. Warnecke, On the solution to the Riemann problem for the compressible duct flow, SIAM J. Appl. Math., in press. Zbl1065.35191MR2068446
- [5] Andrianov N., Saurel R., Warnecke G., A simple method for compressible multiphase mixtures and interfaces, Int. J. Num. Meth. Fluids41 (2003) 109-131. Zbl1025.76025MR1950175
- [6] F. Asakura, Global solutions with a single transonic shock wave for quasilinear hyperbolic systems, submitted for publication. Zbl0886.35092MR1602728
- [7] Botchorishvili R., Perthame B., Vasseur A., Equilibrium schemes for scalar conservation laws with stiff sources, Math. of Comput.72 (2003) 131-157. Zbl1017.65070MR1933816
- [8] F. Bouchut, An introduction to finite volume methods for hyperbolic systems of conservation laws with source, INRIA Rocquencourt Report, 2002.
- [9] Chen G.-Q., Glimm J., Global solutions to the compressible Euler equations with geometrical structure, Comm. Math. Phys.180 (1996) 153-193. Zbl0857.76073MR1403862
- [10] Clarke F.H., Optimization and Non-Smooth Analysis, Classics in Applied Mathematics, vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. Zbl0696.49002MR1058436
- [11] Courant R., Friedrichs K.O., Supersonic Flow and Shock Waves, Wiley, New York, 1948. Zbl0041.11302MR29615
- [12] Dal Maso G., LeFloch P.G., Murat F., Definition and weak stability of nonconservative products, J. Math. Pures Appl.74 (1995) 483-548. Zbl0853.35068MR1365258
- [13] Embid P., Goodman J., Majda J., Multiple steady states for 1-D transonic flows, SIAM J. Sci. Stat. Comput.5 (1984) 21-41. Zbl0573.76055MR731879
- [14] Glimm J., Marschall G., Plohr B., A generalized Riemann problem for quasi-one-dimensional gas flows, Adv. Appl. Math.5 (1981) 1-30. Zbl0566.76056MR736548
- [15] Gosse L., A well-balanced scheme using non-conservative products designed for hyperbolic conservation laws with source-terms, Math. Model Methods Appl. Sci.11 (2001) 339-365. Zbl1018.65108MR1820677
- [16] Greenberg J.M., Leroux A.Y., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal.33 (1996) 1-16. Zbl0876.65064MR1377240
- [17] Hartman P., Ordinary Differential Equations, Wiley, New York, 1964. Zbl0125.32102MR171038
- [18] Isaacson E., Temple B., Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math.52 (1992) 1260-1278. Zbl0794.35100MR1182123
- [19] Isaacson E., Temple B., Convergence of the Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math.55 (1995) 625-640. Zbl0838.35075MR1331577
- [20] Jin S., Wen X., An efficient method for computing hyperbolic systems with geometrical source terms having concentrations, J. Comp. Math.2 (2004) 230-249. Zbl1119.65373MR2058935
- [21] S. Jin, X. Wen, Two interface numerical methods for computing hyperbolic systems with geometrical source terms having concentrations, SIAM J. Sci. Com., in press. Zbl1083.35062
- [22] LeFloch P.G., Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form, Comm. Partial Differential Equations13 (1988) 669-727. Zbl0683.35049MR934378
- [23] P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form, Institute for Math. and its Appl., Minneapolis, Preprint # 593, 1989.
- [24] LeFloch P.G., An existence and uniqueness result for two nonstrictly hyperbolic systems, in: Keyfitz B.L., Shearer M. (Eds.), Nonlinear Evolution Equations that Change Type, IMA Volumes in Math. and its Appl., vol. 27, Springer-Verlag, 1990, pp. 126-138. Zbl0727.35083MR1074190
- [25] LeFloch P.G., Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002. Zbl1019.35001MR1927887
- [26] LeFloch P.G., Thanh M.D., The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Comm. Math. Sci.1 (2003) 763-797. Zbl1091.35044MR2041456
- [27] Lien W.C., Hyperbolic conservation laws with a moving source, Comm. Pure Appl. Math.52 (1999) 1075-1098. Zbl0932.35142MR1692156
- [28] Liu T.-P., Quasilinear hyperbolic systems, Comm. Math. Phys.68 (1979) 141-172. Zbl0435.35054MR543196
- [29] Liu T.-P., Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys.83 (1982) 243-260. Zbl0576.76053MR649161
- [30] Liu T.-P., Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys.28 (1987) 2593-2602. Zbl0662.35068MR913412
- [31] D. Marchesin, P.J. Paes-Leme, A Riemann problem in gas dynamics with bifurcation, PUC Report MAT 02/84, 1984. Zbl0611.35060
- [32] Marchesin D., Plohr B., Schecter S., An organizing center for wave bifurcation flow models, SIAM J. Appl. Math.57 (1997) 1189-1215. Zbl0886.34050MR1470921
Citations in EuDML Documents
top- Frédéric Coquel, Jean-Marc Hérard, Khaled Saleh, Nicolas Seguin, A robust entropy−satisfying finite volume scheme for the isentropic Baer−Nunziato model
- Annalisa Ambroso, Christophe Chalons, Frédéric Coquel, Thomas Galié, Interface model coupling via prescribed local flux balance
- Dietmar Kröner, Philippe G. LeFloch, Mai-Duc Thanh, The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section
- Annalisa Ambroso, Christophe Chalons, Frédéric Coquel, Thomas Galié, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model
- Laëtitia Girault, Jean-Marc Hérard, A two-fluid hyperbolic model in a porous medium
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.