The Riemann problem for a class of resonant hyperbolic systems of balance laws

Paola Goatin; Philippe G. Le Floch

Annales de l'I.H.P. Analyse non linéaire (2004)

  • Volume: 21, Issue: 6, page 881-902
  • ISSN: 0294-1449

How to cite

top

Goatin, Paola, and Le Floch, Philippe G.. "The Riemann problem for a class of resonant hyperbolic systems of balance laws." Annales de l'I.H.P. Analyse non linéaire 21.6 (2004): 881-902. <http://eudml.org/doc/78643>.

@article{Goatin2004,
author = {Goatin, Paola, Le Floch, Philippe G.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {two characteristic speeds coincide; nozzle with discontinuous cross-section},
language = {eng},
number = {6},
pages = {881-902},
publisher = {Elsevier},
title = {The Riemann problem for a class of resonant hyperbolic systems of balance laws},
url = {http://eudml.org/doc/78643},
volume = {21},
year = {2004},
}

TY - JOUR
AU - Goatin, Paola
AU - Le Floch, Philippe G.
TI - The Riemann problem for a class of resonant hyperbolic systems of balance laws
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2004
PB - Elsevier
VL - 21
IS - 6
SP - 881
EP - 902
LA - eng
KW - two characteristic speeds coincide; nozzle with discontinuous cross-section
UR - http://eudml.org/doc/78643
ER -

References

top
  1. [1] Amadori D., Gosse L., Guerra G., Global BV entropy solutions and uniqueness for hyperbolic systems of balance laws, Arch. Rational Mech. Anal.162 (2002) 327-366. Zbl1024.35066MR1904499
  2. [2] Amadori D., Gosse L., Guerra G., Godunov-type approximation for a general resonant balance law with large data, J. Differential Equations198 (2004) 233-274. Zbl1058.35156MR2038581
  3. [3] N. Andrianov, G. Warnecke, The Riemann problem for the Baer–Nunziato model of two-phase flows, J. Comput. Phys., in press. Zbl1115.76414
  4. [4] N. Andrianov, G. Warnecke, On the solution to the Riemann problem for the compressible duct flow, SIAM J. Appl. Math., in press. Zbl1065.35191MR2068446
  5. [5] Andrianov N., Saurel R., Warnecke G., A simple method for compressible multiphase mixtures and interfaces, Int. J. Num. Meth. Fluids41 (2003) 109-131. Zbl1025.76025MR1950175
  6. [6] F. Asakura, Global solutions with a single transonic shock wave for quasilinear hyperbolic systems, submitted for publication. Zbl0886.35092MR1602728
  7. [7] Botchorishvili R., Perthame B., Vasseur A., Equilibrium schemes for scalar conservation laws with stiff sources, Math. of Comput.72 (2003) 131-157. Zbl1017.65070MR1933816
  8. [8] F. Bouchut, An introduction to finite volume methods for hyperbolic systems of conservation laws with source, INRIA Rocquencourt Report, 2002. 
  9. [9] Chen G.-Q., Glimm J., Global solutions to the compressible Euler equations with geometrical structure, Comm. Math. Phys.180 (1996) 153-193. Zbl0857.76073MR1403862
  10. [10] Clarke F.H., Optimization and Non-Smooth Analysis, Classics in Applied Mathematics, vol. 5, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990. Zbl0696.49002MR1058436
  11. [11] Courant R., Friedrichs K.O., Supersonic Flow and Shock Waves, Wiley, New York, 1948. Zbl0041.11302MR29615
  12. [12] Dal Maso G., LeFloch P.G., Murat F., Definition and weak stability of nonconservative products, J. Math. Pures Appl.74 (1995) 483-548. Zbl0853.35068MR1365258
  13. [13] Embid P., Goodman J., Majda J., Multiple steady states for 1-D transonic flows, SIAM J. Sci. Stat. Comput.5 (1984) 21-41. Zbl0573.76055MR731879
  14. [14] Glimm J., Marschall G., Plohr B., A generalized Riemann problem for quasi-one-dimensional gas flows, Adv. Appl. Math.5 (1981) 1-30. Zbl0566.76056MR736548
  15. [15] Gosse L., A well-balanced scheme using non-conservative products designed for hyperbolic conservation laws with source-terms, Math. Model Methods Appl. Sci.11 (2001) 339-365. Zbl1018.65108MR1820677
  16. [16] Greenberg J.M., Leroux A.Y., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal.33 (1996) 1-16. Zbl0876.65064MR1377240
  17. [17] Hartman P., Ordinary Differential Equations, Wiley, New York, 1964. Zbl0125.32102MR171038
  18. [18] Isaacson E., Temple B., Nonlinear resonance in systems of conservation laws, SIAM J. Appl. Math.52 (1992) 1260-1278. Zbl0794.35100MR1182123
  19. [19] Isaacson E., Temple B., Convergence of the 2 × 2 Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math.55 (1995) 625-640. Zbl0838.35075MR1331577
  20. [20] Jin S., Wen X., An efficient method for computing hyperbolic systems with geometrical source terms having concentrations, J. Comp. Math.2 (2004) 230-249. Zbl1119.65373MR2058935
  21. [21] S. Jin, X. Wen, Two interface numerical methods for computing hyperbolic systems with geometrical source terms having concentrations, SIAM J. Sci. Com., in press. Zbl1083.35062
  22. [22] LeFloch P.G., Entropy weak solutions to nonlinear hyperbolic systems in nonconservative form, Comm. Partial Differential Equations13 (1988) 669-727. Zbl0683.35049MR934378
  23. [23] P.G. LeFloch, Shock waves for nonlinear hyperbolic systems in nonconservative form, Institute for Math. and its Appl., Minneapolis, Preprint # 593, 1989. 
  24. [24] LeFloch P.G., An existence and uniqueness result for two nonstrictly hyperbolic systems, in: Keyfitz B.L., Shearer M. (Eds.), Nonlinear Evolution Equations that Change Type, IMA Volumes in Math. and its Appl., vol. 27, Springer-Verlag, 1990, pp. 126-138. Zbl0727.35083MR1074190
  25. [25] LeFloch P.G., Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves, Lectures in Mathematics, ETH Zürich, Birkhäuser, 2002. Zbl1019.35001MR1927887
  26. [26] LeFloch P.G., Thanh M.D., The Riemann problem for fluid flows in a nozzle with discontinuous cross-section, Comm. Math. Sci.1 (2003) 763-797. Zbl1091.35044MR2041456
  27. [27] Lien W.C., Hyperbolic conservation laws with a moving source, Comm. Pure Appl. Math.52 (1999) 1075-1098. Zbl0932.35142MR1692156
  28. [28] Liu T.-P., Quasilinear hyperbolic systems, Comm. Math. Phys.68 (1979) 141-172. Zbl0435.35054MR543196
  29. [29] Liu T.-P., Nonlinear stability and instability of transonic flows through a nozzle, Comm. Math. Phys.83 (1982) 243-260. Zbl0576.76053MR649161
  30. [30] Liu T.-P., Nonlinear resonance for quasilinear hyperbolic equation, J. Math. Phys.28 (1987) 2593-2602. Zbl0662.35068MR913412
  31. [31] D. Marchesin, P.J. Paes-Leme, A Riemann problem in gas dynamics with bifurcation, PUC Report MAT 02/84, 1984. Zbl0611.35060
  32. [32] Marchesin D., Plohr B., Schecter S., An organizing center for wave bifurcation flow models, SIAM J. Appl. Math.57 (1997) 1189-1215. Zbl0886.34050MR1470921

Citations in EuDML Documents

top
  1. Frédéric Coquel, Jean-Marc Hérard, Khaled Saleh, Nicolas Seguin, A robust entropy−satisfying finite volume scheme for the isentropic Baer−Nunziato model
  2. Annalisa Ambroso, Christophe Chalons, Frédéric Coquel, Thomas Galié, Interface model coupling via prescribed local flux balance
  3. Dietmar Kröner, Philippe G. LeFloch, Mai-Duc Thanh, The minimum entropy principle for compressible fluid flows in a nozzle with discontinuous cross-section
  4. Annalisa Ambroso, Christophe Chalons, Frédéric Coquel, Thomas Galié, Relaxation and numerical approximation of a two-fluid two-pressure diphasic model
  5. Laëtitia Girault, Jean-Marc Hérard, A two-fluid hyperbolic model in a porous medium

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.