Second order parabolic systems, optimal regularity, and singular sets of solutions
Frank Duzaar; Giuseppe Mingione
Annales de l'I.H.P. Analyse non linéaire (2005)
- Volume: 22, Issue: 6, page 705-751
- ISSN: 0294-1449
Access Full Article
topHow to cite
topDuzaar, Frank, and Mingione, Giuseppe. "Second order parabolic systems, optimal regularity, and singular sets of solutions." Annales de l'I.H.P. Analyse non linéaire 22.6 (2005): 705-751. <http://eudml.org/doc/78676>.
@article{Duzaar2005,
author = {Duzaar, Frank, Mingione, Giuseppe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {partial regularity; caloric approximation lemma; parabolic Hausdorff dimension},
language = {eng},
number = {6},
pages = {705-751},
publisher = {Elsevier},
title = {Second order parabolic systems, optimal regularity, and singular sets of solutions},
url = {http://eudml.org/doc/78676},
volume = {22},
year = {2005},
}
TY - JOUR
AU - Duzaar, Frank
AU - Mingione, Giuseppe
TI - Second order parabolic systems, optimal regularity, and singular sets of solutions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 6
SP - 705
EP - 751
LA - eng
KW - partial regularity; caloric approximation lemma; parabolic Hausdorff dimension
UR - http://eudml.org/doc/78676
ER -
References
top- [1] Acerbi E., Mingione G., Seregin G.A., Regularity results for parabolic systems related to a class of non-Newtonian fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire21 (2004) 25-60. Zbl1052.76004MR2037246
- [2] Arkhipova A.A., On a partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth, J. Math. Sci. (New York)101 (2000) 3385-3397, (1997 in Russian). Zbl0969.35032MR1698511
- [3] Bojarski B., Iwaniec T., Analytical foundations of the theory of quasiconformal mappings in , Ann. Acad. Sci. Fenn. Ser. A I8 (1983) 257-324. Zbl0548.30016MR731786
- [4] Campanato S., Equazioni paraboliche del secondo ordine e spazi , Ann. Mat. Pura Appl.73 (4) (1996) 55-102. Zbl0144.14101MR213737
- [5] Campanato S., On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann. Mat. Pura Appl.137 (4) (1984) 83-122. Zbl0704.35024MR772253
- [6] Da Prato G., Spazi e loro proprietà, Ann. Mat. Pura Appl.69 (4) (1965) 383-392. Zbl0145.16207MR192330
- [7] De Giorgi E., Frontiere orientate di misura minima, Sem. Scuola Normale Superiore Pisa (1960–1961). Zbl0296.49031
- [8] De Giorgi E., Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital.1 (4) (1968) 135-137. Zbl0155.17603MR227827
- [9] DiBenedetto E., Degenerate Parabolic Equations, Universitext, vol. XV, Springer-Verlag, New York, NY, 1993, p. 387. Zbl0794.35090MR1230384
- [10] Duzaar F., Gastel A., Mingione G., Elliptic systems, singular sets and Dini continuity, Comm. Partial Differential Equations29 (2004). Zbl1140.35415MR2097582
- [11] Duzaar F., Grotowski J.F., Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation, Manuscripta Math.103 (2000) 267-298. Zbl0971.35025MR1802484
- [12] Duzaar F., Mingione G., The p-harmonic approximation and the regularity of p-harmonic maps, Calc. Var. Partial Differential Equations20 (2004) 235-256. Zbl1142.35433MR2062943
- [13] Duzaar F., Mingione G., Regularity for degenerate elliptic problems via p-harmonic approximation, Ann. Inst. H. Poincaré Anal. Non Linéaire21 (2004). Zbl1112.35078MR2086757
- [14] F. Duzaar, G. Mingione, K. Steffen, Second order parabolic systems with p-growth and regularity, in press. Zbl1238.35001
- [15] Duzaar F., Steffen K., Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew. Math.546 (2002) 73-138. Zbl0999.49024MR1900994
- [16] Giaquinta M., Multiple Integrals in the Calculus of Variations and Non Linear Elliptic Systems, Ann. of Math. Stud., vol. 105, Princeton University Press, 1983. Zbl0516.49003MR717034
- [17] Giaquinta M., Struwe M., On the partial regularity of weak solutions of nonlinear parabolic systems, Math. Z.179 (1982) 437-451. Zbl0469.35028MR652852
- [18] Giaquinta M., Struwe M., An optimal regularity result for a class of quasilinear parabolic systems, Manuscripta Math.36 (1981) 223-239. Zbl0475.35026MR641975
- [19] Giusti E., Direct Methods in the Calculus of Variations, World Scientific, Singapore, 2003. Zbl1028.49001MR1962933
- [20] Hao W., Leonardi S., Necas J., An example of irregular solution to a nonlinear Euler–Lagrange elliptic system with real analytic coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci.23 (4) (1996) 57-67. Zbl0864.35031MR1401417
- [21] John O., Stará J., Some (new) counterexamples of parabolic systems, Comment. Math. Univ. Carolin.36 (1995) 503-510. Zbl0846.35024MR1364491
- [22] John O., Stará J., On the regularity of weak solutions to parabolic systems in two spatial dimensions, Comm. Partial Differential Equations23 (1998) 1159-1170. Zbl0937.35020MR1642595
- [23] John O., Stará J., On the existence of time derivative of weak solutions to parabolic systems, in: Salvi R. (Ed.), Navier–Stokes Equations. Theory and Numerical Methods, Proceedings of the International Conference, Varenna, 1997, Pitman Res. Notes Math. Ser., vol. 388, Longman, Harlow, 1998, pp. 193-200. Zbl0940.35048MR1773597
- [24] Kinnunen J., Lewis J.L., Higher integrability for parabolic systems of p-Laplacian type, Duke Math. J.102 (2000) 253-271. Zbl0994.35036MR1749438
- [25] Koshelev A., Regularity Problem for Quasilinear Elliptic and Parabolic Systems, Lecture Notes in Math., vol. 1614, Springer, 1995. Zbl0847.35023MR1442954
- [26] Kronz M., Partial regularity results for minimizers of quasiconvex functionals of higher order, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 81-112. Zbl1010.49023MR1902546
- [27] Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N., Linear and quasi-linear equations of parabolic type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., 1968. Zbl0174.15403
- [28] Lions J.L., Quelques methodes des resolution des problemes aux limites non lineaires, Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
- [29] Malý J., Stará J., John O., A note on the regularity of autonomous quasilinear elliptic and parabolic systems, Comm. Partial Differential Equations13 (1988) 895-903. Zbl0685.35024MR940961
- [30] Mingione G., The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal.166 (2003) 287-301. Zbl1142.35391MR1961442
- [31] Mingione G., Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var. Partial Differential Equations18 (2003) 373-400. Zbl1045.35024MR2020367
- [32] Misawa M., Partial regularity results for evolutional p-Laplacian systems with natural growth, Manuscripta Math.109 (2002) 419-454. Zbl1026.35025MR1946712
- [33] Misawa M., Local Hölder regularity of gradients for evolutional p-Laplacian systems, Ann. Mat. Pura Appl.181 (4) (2002) 389-405. Zbl1223.35194MR1939688
- [34] Moser R., Regularity for the approximated harmonic map equation and application to the heat flow for harmonic maps, Math. Z.243 (2003) 263-289. Zbl1027.58014MR1961867
- [35] J. Naumann, J. Wolf, Interior integral estimates on weak solutions of nonlinear parabolic systems, Preprint 94-11, Inst. für Math., Humboldt University, 1994.
- [36] Naumann J., Wolf J., Wolff M., On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions, Comment. Math. Univ. Carolin.39 (1998) 237-255. Zbl0940.35046MR1651938
- [37] Necas J., Sverák V., On regularity of solutions of nonlinear parabolic systems, Ann. Scuola Norm. Super. Pisa Cl. Sci.18 (4) (1991) 1-11. Zbl0735.35035MR1118218
- [38] Seregin G.A., Interior regularity for solutions to the modified Navier–Stokes equations, J. Math. Fluid Mech.1 (1999) 235-281. Zbl0961.35106MR1738752
- [39] Simon J., Compact sets in the space , Ann. Mat. Pura Appl.146 (4) (1987) 65-96. Zbl0629.46031MR916688
- [40] Simon L., Lectures on Geometric Measure Theory, Proc. Centre Math. Anal., Austr. Nat. Univ., Canberra, 1983. Zbl0546.49019MR756417
- [41] Simon L., Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Math., ETH Zürich, Birkhäuser, Basel, 1996. Zbl0864.58015MR1399562
- [42] Stará J., John O., Malý J., Counterexample to the regularity of weak solution of the quasilinear parabolic system, Comment. Math. Univ. Carolin.27 (1986) 123-136. Zbl0625.35047MR843425
- [43] Stredulinsky E.W., Higher integrability from reverse Hölder inequalities, Indiana Univ. Math. J.29 (1980) 407-413. Zbl0442.35064MR570689
- [44] Struwe M., On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems, Manuscripta Math.35 (1981) 125-145. Zbl0519.35007MR627929
- [45] Struwe M., A counterexample in regularity theory for parabolic systems, Czech. Math. J.34 (1984) 183-188. Zbl0573.35053MR743484
- [46] Sverák V., Yan X., Non Lipschitz minimizers of smooth uniformly convex variational integrals, Proc. Nat. Acad. Sci. USA99 (24) (2002) 15268-15276. Zbl1106.49046MR1946762
- [47] Zhong T., -partial regularity of nonlinear parabolic systems, J. Partial Differential Equations5 (1992) 23-34. Zbl0772.35009MR1155325
Citations in EuDML Documents
top- Arina A. Arkhipova, Jana Stará, Regularity problem for one class of nonlinear parabolic systems with non-smooth in time principal matrices
- Arina A. Arkhipova, Jana Stará, A priori estimates for quasilinear parabolic systems with quadratic nonlinearities in the gradient
- Giuseppe Mingione, Regularity of minima: an invitation to the Dark Side of the Calculus of Variations
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.