Second order parabolic systems, optimal regularity, and singular sets of solutions

Frank Duzaar; Giuseppe Mingione

Annales de l'I.H.P. Analyse non linéaire (2005)

  • Volume: 22, Issue: 6, page 705-751
  • ISSN: 0294-1449

How to cite

top

Duzaar, Frank, and Mingione, Giuseppe. "Second order parabolic systems, optimal regularity, and singular sets of solutions." Annales de l'I.H.P. Analyse non linéaire 22.6 (2005): 705-751. <http://eudml.org/doc/78676>.

@article{Duzaar2005,
author = {Duzaar, Frank, Mingione, Giuseppe},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {partial regularity; caloric approximation lemma; parabolic Hausdorff dimension},
language = {eng},
number = {6},
pages = {705-751},
publisher = {Elsevier},
title = {Second order parabolic systems, optimal regularity, and singular sets of solutions},
url = {http://eudml.org/doc/78676},
volume = {22},
year = {2005},
}

TY - JOUR
AU - Duzaar, Frank
AU - Mingione, Giuseppe
TI - Second order parabolic systems, optimal regularity, and singular sets of solutions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2005
PB - Elsevier
VL - 22
IS - 6
SP - 705
EP - 751
LA - eng
KW - partial regularity; caloric approximation lemma; parabolic Hausdorff dimension
UR - http://eudml.org/doc/78676
ER -

References

top
  1. [1] Acerbi E., Mingione G., Seregin G.A., Regularity results for parabolic systems related to a class of non-Newtonian fluids, Ann. Inst. H. Poincaré Anal. Non Linéaire21 (2004) 25-60. Zbl1052.76004MR2037246
  2. [2] Arkhipova A.A., On a partial regularity up to the boundary of weak solutions to quasilinear parabolic systems with quadratic growth, J. Math. Sci. (New York)101 (2000) 3385-3397, (1997 in Russian). Zbl0969.35032MR1698511
  3. [3] Bojarski B., Iwaniec T., Analytical foundations of the theory of quasiconformal mappings in R n , Ann. Acad. Sci. Fenn. Ser. A I8 (1983) 257-324. Zbl0548.30016MR731786
  4. [4] Campanato S., Equazioni paraboliche del secondo ordine e spazi L 2 , θ ( Ω , δ ) , Ann. Mat. Pura Appl.73 (4) (1996) 55-102. Zbl0144.14101MR213737
  5. [5] Campanato S., On the nonlinear parabolic systems in divergence form. Hölder continuity and partial Hölder continuity of the solutions, Ann. Mat. Pura Appl.137 (4) (1984) 83-122. Zbl0704.35024MR772253
  6. [6] Da Prato G., Spazi L ( p , ϑ ) ( Ω , δ ) e loro proprietà, Ann. Mat. Pura Appl.69 (4) (1965) 383-392. Zbl0145.16207MR192330
  7. [7] De Giorgi E., Frontiere orientate di misura minima, Sem. Scuola Normale Superiore Pisa (1960–1961). Zbl0296.49031
  8. [8] De Giorgi E., Un esempio di estremali discontinue per un problema variazionale di tipo ellittico, Boll. Un. Mat. Ital.1 (4) (1968) 135-137. Zbl0155.17603MR227827
  9. [9] DiBenedetto E., Degenerate Parabolic Equations, Universitext, vol. XV, Springer-Verlag, New York, NY, 1993, p. 387. Zbl0794.35090MR1230384
  10. [10] Duzaar F., Gastel A., Mingione G., Elliptic systems, singular sets and Dini continuity, Comm. Partial Differential Equations29 (2004). Zbl1140.35415MR2097582
  11. [11] Duzaar F., Grotowski J.F., Optimal interior partial regularity for nonlinear elliptic systems: the method of A-harmonic approximation, Manuscripta Math.103 (2000) 267-298. Zbl0971.35025MR1802484
  12. [12] Duzaar F., Mingione G., The p-harmonic approximation and the regularity of p-harmonic maps, Calc. Var. Partial Differential Equations20 (2004) 235-256. Zbl1142.35433MR2062943
  13. [13] Duzaar F., Mingione G., Regularity for degenerate elliptic problems via p-harmonic approximation, Ann. Inst. H. Poincaré Anal. Non Linéaire21 (2004). Zbl1112.35078MR2086757
  14. [14] F. Duzaar, G. Mingione, K. Steffen, Second order parabolic systems with p-growth and regularity, in press. Zbl1238.35001
  15. [15] Duzaar F., Steffen K., Optimal interior and boundary regularity for almost minimizers to elliptic variational integrals, J. Reine Angew. Math.546 (2002) 73-138. Zbl0999.49024MR1900994
  16. [16] Giaquinta M., Multiple Integrals in the Calculus of Variations and Non Linear Elliptic Systems, Ann. of Math. Stud., vol. 105, Princeton University Press, 1983. Zbl0516.49003MR717034
  17. [17] Giaquinta M., Struwe M., On the partial regularity of weak solutions of nonlinear parabolic systems, Math. Z.179 (1982) 437-451. Zbl0469.35028MR652852
  18. [18] Giaquinta M., Struwe M., An optimal regularity result for a class of quasilinear parabolic systems, Manuscripta Math.36 (1981) 223-239. Zbl0475.35026MR641975
  19. [19] Giusti E., Direct Methods in the Calculus of Variations, World Scientific, Singapore, 2003. Zbl1028.49001MR1962933
  20. [20] Hao W., Leonardi S., Necas J., An example of irregular solution to a nonlinear Euler–Lagrange elliptic system with real analytic coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci.23 (4) (1996) 57-67. Zbl0864.35031MR1401417
  21. [21] John O., Stará J., Some (new) counterexamples of parabolic systems, Comment. Math. Univ. Carolin.36 (1995) 503-510. Zbl0846.35024MR1364491
  22. [22] John O., Stará J., On the regularity of weak solutions to parabolic systems in two spatial dimensions, Comm. Partial Differential Equations23 (1998) 1159-1170. Zbl0937.35020MR1642595
  23. [23] John O., Stará J., On the existence of time derivative of weak solutions to parabolic systems, in: Salvi R. (Ed.), Navier–Stokes Equations. Theory and Numerical Methods, Proceedings of the International Conference, Varenna, 1997, Pitman Res. Notes Math. Ser., vol. 388, Longman, Harlow, 1998, pp. 193-200. Zbl0940.35048MR1773597
  24. [24] Kinnunen J., Lewis J.L., Higher integrability for parabolic systems of p-Laplacian type, Duke Math. J.102 (2000) 253-271. Zbl0994.35036MR1749438
  25. [25] Koshelev A., Regularity Problem for Quasilinear Elliptic and Parabolic Systems, Lecture Notes in Math., vol. 1614, Springer, 1995. Zbl0847.35023MR1442954
  26. [26] Kronz M., Partial regularity results for minimizers of quasiconvex functionals of higher order, Ann. Inst. H. Poincaré Anal. Non Linéaire19 (2002) 81-112. Zbl1010.49023MR1902546
  27. [27] Ladyzhenskaya O.A., Solonnikov V.A., Ural'tseva N.N., Linear and quasi-linear equations of parabolic type, Transl. Math. Monographs, vol. 23, Amer. Math. Soc., 1968. Zbl0174.15403
  28. [28] Lions J.L., Quelques methodes des resolution des problemes aux limites non lineaires, Gauthier-Villars, Paris, 1969. Zbl0189.40603MR259693
  29. [29] Malý J., Stará J., John O., A note on the regularity of autonomous quasilinear elliptic and parabolic systems, Comm. Partial Differential Equations13 (1988) 895-903. Zbl0685.35024MR940961
  30. [30] Mingione G., The singular set of solutions to non-differentiable elliptic systems, Arch. Ration. Mech. Anal.166 (2003) 287-301. Zbl1142.35391MR1961442
  31. [31] Mingione G., Bounds for the singular set of solutions to non linear elliptic systems, Calc. Var. Partial Differential Equations18 (2003) 373-400. Zbl1045.35024MR2020367
  32. [32] Misawa M., Partial regularity results for evolutional p-Laplacian systems with natural growth, Manuscripta Math.109 (2002) 419-454. Zbl1026.35025MR1946712
  33. [33] Misawa M., Local Hölder regularity of gradients for evolutional p-Laplacian systems, Ann. Mat. Pura Appl.181 (4) (2002) 389-405. Zbl1223.35194MR1939688
  34. [34] Moser R., Regularity for the approximated harmonic map equation and application to the heat flow for harmonic maps, Math. Z.243 (2003) 263-289. Zbl1027.58014MR1961867
  35. [35] J. Naumann, J. Wolf, Interior integral estimates on weak solutions of nonlinear parabolic systems, Preprint 94-11, Inst. für Math., Humboldt University, 1994. 
  36. [36] Naumann J., Wolf J., Wolff M., On the Hölder continuity of weak solutions to nonlinear parabolic systems in two space dimensions, Comment. Math. Univ. Carolin.39 (1998) 237-255. Zbl0940.35046MR1651938
  37. [37] Necas J., Sverák V., On regularity of solutions of nonlinear parabolic systems, Ann. Scuola Norm. Super. Pisa Cl. Sci.18 (4) (1991) 1-11. Zbl0735.35035MR1118218
  38. [38] Seregin G.A., Interior regularity for solutions to the modified Navier–Stokes equations, J. Math. Fluid Mech.1 (1999) 235-281. Zbl0961.35106MR1738752
  39. [39] Simon J., Compact sets in the space L p ( 0 , T ; B ) , Ann. Mat. Pura Appl.146 (4) (1987) 65-96. Zbl0629.46031MR916688
  40. [40] Simon L., Lectures on Geometric Measure Theory, Proc. Centre Math. Anal., Austr. Nat. Univ., Canberra, 1983. Zbl0546.49019MR756417
  41. [41] Simon L., Theorems on Regularity and Singularity of Energy Minimizing Maps, Lectures in Math., ETH Zürich, Birkhäuser, Basel, 1996. Zbl0864.58015MR1399562
  42. [42] Stará J., John O., Malý J., Counterexample to the regularity of weak solution of the quasilinear parabolic system, Comment. Math. Univ. Carolin.27 (1986) 123-136. Zbl0625.35047MR843425
  43. [43] Stredulinsky E.W., Higher integrability from reverse Hölder inequalities, Indiana Univ. Math. J.29 (1980) 407-413. Zbl0442.35064MR570689
  44. [44] Struwe M., On the Hölder continuity of bounded weak solutions of quasilinear parabolic systems, Manuscripta Math.35 (1981) 125-145. Zbl0519.35007MR627929
  45. [45] Struwe M., A counterexample in regularity theory for parabolic systems, Czech. Math. J.34 (1984) 183-188. Zbl0573.35053MR743484
  46. [46] Sverák V., Yan X., Non Lipschitz minimizers of smooth uniformly convex variational integrals, Proc. Nat. Acad. Sci. USA99 (24) (2002) 15268-15276. Zbl1106.49046MR1946762
  47. [47] Zhong T., C 1 , α -partial regularity of nonlinear parabolic systems, J. Partial Differential Equations5 (1992) 23-34. Zbl0772.35009MR1155325

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.