Nodal domains and spectral minimal partitions

B. Helffer; T. Hoffmann-Ostenhof; S. Terracini

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 1, page 101-138
  • ISSN: 0294-1449

How to cite

top

Helffer, B., Hoffmann-Ostenhof, T., and Terracini, S.. "Nodal domains and spectral minimal partitions." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 101-138. <http://eudml.org/doc/78831>.

@article{Helffer2009,
author = {Helffer, B., Hoffmann-Ostenhof, T., Terracini, S.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {optimal partitions; eigenvalues; nodal domains; spectral minimal partitions},
language = {eng},
number = {1},
pages = {101-138},
publisher = {Elsevier},
title = {Nodal domains and spectral minimal partitions},
url = {http://eudml.org/doc/78831},
volume = {26},
year = {2009},
}

TY - JOUR
AU - Helffer, B.
AU - Hoffmann-Ostenhof, T.
AU - Terracini, S.
TI - Nodal domains and spectral minimal partitions
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 101
EP - 138
LA - eng
KW - optimal partitions; eigenvalues; nodal domains; spectral minimal partitions
UR - http://eudml.org/doc/78831
ER -

References

top
  1. [1] Abramowitz M., Stegun I.A., Handbook of Mathematical Functions, Applied Math. Series, vol. 55, National Bureau of Standards, 1964. Zbl0171.38503
  2. [2] Alessandrini G., Critical points of solutions of elliptic equations in two variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)14 (2) (1988) 229-256. Zbl0649.35026MR939628
  3. [3] Alessandrini G., Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains, Comment. Math. Helv.69 (1) (1994) 142-154. Zbl0838.35006MR1259610
  4. [4] Ancona A., Helffer B., Hoffmann-Ostenhof T., Nodal domain theorems à la Courant, Documenta Math.9 (2004) 283-299. Zbl1067.35051MR2117417
  5. [5] Bandle C., Isoperimetric Inequalities and Applications, Monographs and Studies in Mathematics, vol. 7, Pitman, 1980. Zbl0436.35063MR572958
  6. [6] Bucur P., Zolesio J.P., N-dimensional shape optimization under capacitary constraints, J. Differential Equations123 (1995) 504-522. Zbl0847.49029MR1362884
  7. [7] Bucur P., Buttazzo G., Henrot A., Existence results for some optimal partition problems, in: Monographs and Studies in Mathematics, vol. 8, 1998, pp. 571-579. Zbl0915.49006MR1657219
  8. [8] Buttazzo G., Dal Maso G., Shape optimization for Dirichlet problems: relaxed formulation and optimality conditions, Appl. Math. Optim.23 (1991) 17-49. Zbl0762.49017MR1076053
  9. [9] Buttazzo G., Dal Maso G., An existence result for a class of shape optimization problems, Arch. Rat. Mech. Anal.122 (1993) 183-195. Zbl0811.49028MR1217590
  10. [10] Cafferelli L.A., Fang Hua Lin, An optimal partition problem for eigenvalues, J. Sci. Comput.31 (2007) 5-14. Zbl1123.65060MR2304268
  11. [11] Conti M., Terracini S., Verzini G., A variational problem for the spatial segregation of reaction–diffusion systems, Indiana Univ. Math. J.54 (3) (2005) 779-815. Zbl1132.35397MR2151234
  12. [12] Conti M., Terracini S., Verzini G., On a class of optimal partition problems related to the Fucik spectrum and to the monotonicity formula, Calc. Var.22 (2005) 45-72. Zbl1132.35365MR2105968
  13. [13] Dauge M., Helffer B., Eigenvalue variation II. Multidimensional problems, J. Differential Equations104 (2) (1993) 263-297. Zbl0807.34033MR1231469
  14. [14] Diestel R., Graph Theory, Graduate Texts in Mathematics, vol. 173, second ed., Springer, 2000. Zbl0945.05002MR1743598
  15. [15] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, Springer, 1983. Zbl0562.35001MR737190
  16. [16] Greenberg M.J., Harper J.R., Algebraic Topology: A First Course, Mathematics Lecture Note Series, vol. 58, Benjamin/Cummings Publishing Co., Inc., Reading, MA, 1981, Advanced Book Program. Zbl0498.55001MR643101
  17. [17] Hartman P., Wintner A., On the local behavior of solutions of non-parabolic partial differential equations, Amer. J. Math.75 (1953) 449-476. Zbl0052.32201MR58082
  18. [18] B. Helffer, T. Hoffmann-Ostenhof, Converse spectral problems for nodal domains, Extended version, Preprint, Sept. 2005, mp_arc 05343. Zbl1125.35068MR2324557
  19. [19] B. Helffer, T. Hoffmann-Ostenhof, Converse spectral problems for nodal domains. Preprint, April 2006, Moscow Math. J., in press. Zbl1125.35068MR2324557
  20. [20] B. Helffer, T. Hoffmann-Ostenhof, On nodal patterns and spectral optimal partitions, Unpublished Notes, December 2005. 
  21. [21] Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Local properties of solutions of Schrödinger equations, Comm. Partial Differential Equations17 (1992) 491-522. Zbl0783.35054MR1163434
  22. [22] Hoffmann-Ostenhof M., Hoffmann-Ostenhof T., Nadirashvili N., Interior Hölder estimates for solutions of Schrödinger equations and the regularity of nodal sets, Comm. Partial Differential Equations20 (1995) 1241-1243. Zbl0846.35036MR1335750
  23. [23] Hoffmann-Ostenhof T., Michor P., Nadirashvili N., Bounds on the multiplicity of eigenvalues for fixed membranes, GAFA9 (1999) 1169-1188. Zbl0949.35102MR1736932
  24. [24] Kato T., Perturbation Theory for Linear Operators, second ed., Springer, 1977. Zbl0342.47009MR1335452
  25. [25] Pleijel A., Remarks on Courant's nodal theorem, Comm. Pure Appl. Math.9 (1956) 543-550. Zbl0070.32604MR80861
  26. [26] Pommerenke C., Boundary Behavior of Conformal Maps, Grundlehren der Mathematischen Wissenshaften, vol. 295, Springer, 1992. Zbl0762.30001MR1217706
  27. [27] Reed M., Simon B., Methods of Modern Mathematical Physics IV: Analysis of Operators, Academic Press, 1978. Zbl0401.47001MR493421
  28. [28] Shimakura N., La pemiére valuer propre du Laplacien pour le problème de Dirichlet, J. Math. Pures Appl.62 (1983) 129-152. Zbl0526.35060MR713393
  29. [29] Simon B., Lower semi-continuity of positive quadratic forms, Proc. Roy. Soc. Edinburgh29 (1977) 267-273. Zbl0442.47017MR512713
  30. [30] Simon B., A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Funct. Anal.28 (1978) 377-385. Zbl0413.47029MR500266
  31. [31] Stollmann P., A convergence theorem for Dirichlet forms with applications to boundary value problems with varying domains, Math. Z.219 (1995) 275-287. Zbl0822.31005MR1337221
  32. [32] Sverak V., On optimal shape design, J. Math. Pures Appl.72 (1993) 537-551. Zbl0849.49021MR1249408
  33. [33] Watson G.N., A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1966. Zbl0174.36202MR1349110JFM48.0412.02
  34. [34] Weidmann J., Continuity of the eigenvalues of self-adjoint operators with respect to the strong operator topology, Integral Equations Operator Theory3 (1980) 138-142. Zbl0476.47008MR570866
  35. [35] Weidmann J., Monotone continuity of the spectral resolution and the eigenvalues, Proc. R. Soc. Edinburgh Sect. A85 (1980) 131-136. Zbl0448.47008MR566070
  36. [36] Weidmann J., Stetige Abhängigkeit der Eigenwerte und Eigenfunktionen elliptischer Differentialoperatoren vom Gebiet, Math. Scand.54 (1984) 51-69. Zbl0526.35061MR753063

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.