Controllability of the discrete-spectrum Schrödinger equation driven by an external field

Thomas Chambrion; Paolo Mason; Mario Sigalotti; Ugo Boscain

Annales de l'I.H.P. Analyse non linéaire (2009)

  • Volume: 26, Issue: 1, page 329-349
  • ISSN: 0294-1449

How to cite


Chambrion, Thomas, et al. "Controllability of the discrete-spectrum Schrödinger equation driven by an external field." Annales de l'I.H.P. Analyse non linéaire 26.1 (2009): 329-349. <>.

author = {Chambrion, Thomas, Mason, Paolo, Sigalotti, Mario, Boscain, Ugo},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {quantum control; control of PDE; approximate controllability; bilinear Schrödinger equation; Galerkin approximation; density matrix},
language = {eng},
number = {1},
pages = {329-349},
publisher = {Elsevier},
title = {Controllability of the discrete-spectrum Schrödinger equation driven by an external field},
url = {},
volume = {26},
year = {2009},

AU - Chambrion, Thomas
AU - Mason, Paolo
AU - Sigalotti, Mario
AU - Boscain, Ugo
TI - Controllability of the discrete-spectrum Schrödinger equation driven by an external field
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 2009
PB - Elsevier
VL - 26
IS - 1
SP - 329
EP - 349
LA - eng
KW - quantum control; control of PDE; approximate controllability; bilinear Schrödinger equation; Galerkin approximation; density matrix
UR -
ER -


  1. [1] R. Adami, U. Boscain, Controllability of the Schrödinger equation via intersection of eigenvalues, in: Proceedings of the 44th IEEE Conference on Decision and Control, December 12–15, 2005, pp. 1080–1085. 
  2. [2] Agrachev A., Chambrion T., An estimation of the controllability time for single-input systems on compact Lie groups, ESAIM Control Optim. Calc. Var.12 (3) (2006) 409-441. Zbl1106.93006MR2224821
  3. [3] Agrachev A., Kuksin S., Sarychev A., Shirikyan A., On finite-dimensional projections of distributions for solutions of randomly forced 2D Navier–Stokes equations, Ann. Inst. H. Poincaré Probab. Statist.43 (4) (2007) 399-415. Zbl1177.60059MR2329509
  4. [4] Agrachev A.A., Sachkov Y.L., Control Theory from the Geometric Viewpoint, Encyclopaedia of Mathematical Sciences, vol. 87, Springer-Verlag, Berlin, 2004, Control Theory and Optimization, II. Zbl1062.93001MR2062547
  5. [5] Agrachev A.A., Sarychev A.V., Controllability of 2D Euler and Navier–Stokes equations by degenerate forcing, Commun. Math. Phys.265 (3) (2006) 673-697. Zbl1105.93008MR2231685
  6. [6] Albert J.H., Genericity of simple eigenvalues for elliptic PDE's, Proc. Amer. Math. Soc.48 (1975) 413-418. Zbl0302.35071MR385934
  7. [7] Albertini F., D'Alessandro D., Notions of controllability for bilinear multilevel quantum systems, IEEE Trans. Automat. Control48 (8) (2003) 1399-1403. MR2004373
  8. [8] Altafini C., Controllability of quantum mechanical systems by root space decomposition of su N , J. Math. Phys.43 (5) (2002) 2051-2062. Zbl1059.93016MR1893660
  9. [9] Altafini C., Controllability properties for finite dimensional quantum Markovian master equations, J. Math. Phys.44 (6) (2003) 2357-2372. Zbl1062.82033MR1979090
  10. [10] Ball J.M., Marsden J.E., Slemrod M., Controllability for distributed bilinear systems, SIAM J. Control Optim.20 (4) (1982) 575-597. Zbl0485.93015MR661034
  11. [11] Baudouin L., Kavian O., Puel J.-P., Regularity for a Schrödinger equation with singular potentials and application to bilinear optimal control, J. Differential Equations216 (1) (2005) 188-222. Zbl1109.35094MR2158922
  12. [12] Beauchard K., Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl. (9)84 (7) (2005) 851-956. Zbl1124.93009MR2144647
  13. [13] Beauchard K., Coron J.-M., Controllability of a quantum particle in a moving potential well, J. Funct. Anal.232 (2) (2006) 328-389. Zbl1188.93017MR2200740
  14. [14] Borzì A., Decker E., Analysis of a leap-frog pseudospectral scheme for the Schrödinger equation, J. Comput. Appl. Math.193 (1) (2006) 65-88. Zbl1118.65107MR2228707
  15. [15] Boscain U., Chambrion T., Charlot G., Nonisotropic 3-level quantum systems: complete solutions for minimum time and minimum energy, Discrete Contin. Dyn. Syst. Ser. B5 (4) (2005) 957-990, (electronic). Zbl1084.81083MR2170218
  16. [16] Boscain U., Charlot G., Resonance of minimizers for n-level quantum systems with an arbitrary cost, ESAIM Control Optim. Calc. Var.10 (4) (2004) 593-614, (electronic). Zbl1072.49002MR2111082
  17. [17] Boscain U., Mason P., Time minimal trajectories for a spin 1/2 particle in a magnetic field, J. Math. Phys.47 (6) (2006) 29, 062101. Zbl1112.81098MR2239948
  18. [18] Coron J.-M., Control and Nonlinearity, Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007. Zbl1140.93002MR2302744
  19. [19] D'Alessandro D., Introduction to Quantum Control and Dynamics, Applied Mathematics and Nonlinear Science Series, Chapman, Hall/CRC, Boca Raton, FL, 2008. Zbl1139.81001MR2357229
  20. [20] Davies E.B., Spectral Theory and Differential Operators, Cambridge Studies in Advanced Mathematics, vol. 42, Cambridge University Press, Cambridge, 1995. Zbl0893.47004MR1349825
  21. [21] Henrot A., Extremum Problems for Eigenvalues of Elliptic Operators, Frontiers in Mathematics, Birkhäuser Verlag, Basel, 2006. Zbl1109.35081MR2251558
  22. [22] Hübler P., Bargon J., Glaser S.J., Nuclear magnetic resonance quantum computing exploiting the pure spin state of para hydrogen, J. Chem. Phys.113 (6) (2000) 2056-2059. 
  23. [23] Ito K., Kunisch K., Optimal bilinear control of an abstract Schrödinger equation, SIAM J. Control Optim.46 (1) (2007) 274-287, (electronic). Zbl1136.35089MR2299629
  24. [24] Jurdjevic V., Sussmann H.J., Control systems on Lie groups, J. Differential Equations12 (1972) 313-329. Zbl0237.93027MR331185
  25. [25] Kato T., Perturbation Theory for Linear Operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag, New York, 1966. Zbl0148.12601MR203473
  26. [26] Khaneja N., Glaser S.J., Brockett R., Sub-Riemannian geometry and time optimal control of three spin systems: quantum gates and coherence transfer, Phys. Rev. A65 (3) (2002) 11, 032301. MR1891763
  27. [27] M. Mirrahimi, Lyapunov control of a particle in a finite quantum potential well, in: Proceedings of the 45th IEEE Conference on Decision and Control, December 13–15, 2006. 
  28. [28] Mirrahimi M., Rouchon P., Controllability of quantum harmonic oscillators, IEEE Trans. Automat. Control49 (5) (2004) 745-747. MR2057808
  29. [29] Peirce A., Dahleh M., Rabitz H., Optimal control of quantum mechanical systems: Existence, numerical approximations, and applications, Phys. Rev. A37 (1988) 4950-4964. MR949169
  30. [30] Pierfelice V., Strichartz estimates for the Schrödinger and heat equations perturbed with singular and time dependent potentials, Asymptotic Anal.47 (1–2) (2006) 1-18. Zbl1100.35020MR2224403
  31. [31] Rabitz H., de Vivie-Riedle H., Motzkus R., Kompa K., Wither the future of controlling quantum phenomena?, Science288 (2000) 824-828. 
  32. [32] Reed M., Simon B., Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press (Harcourt Brace Jovanovich Publishers), New York, 1978. Zbl0401.47001MR493421
  33. [33] Rellich F., Perturbation Theory of Eigenvalue Problems, Assisted by J. Berkowitz. With a preface by Jacob T. Schwartz, Gordon Breach Science Publishers, New York, 1969. Zbl0181.42002MR240668
  34. [34] Rodnianski I., Schlag W., Time decay for solutions of Schrödinger equations with rough and time-dependent potentials, Invent. Math.155 (3) (2004) 451-513. Zbl1063.35035MR2038194
  35. [35] Rodrigues S.S., Navier–Stokes equation on the rectangle controllability by means of low mode forcing, J. Dynam. Control Syst.12 (4) (2006) 517-562. Zbl1105.35085MR2253360
  36. [36] P. Rouchon, Control of a quantum particle in a moving potential well, in: Lagrangian and Hamiltonian Methods for Nonlinear Control 2003, IFAC, Laxenburg, 2003, pp. 287–290. MR2082989
  37. [37] Sachkov Y.L., Controllability of invariant systems on Lie groups and homogeneous spaces, Dynamical systems, 8, J. Math. Sci. (New York)100 (4) (2000) 2355-2427. Zbl1073.93511MR1776551
  38. [38] Shapiro M., Brumer P., Principles of the Quantum Control of Molecular Processes, Wiley-VCH, 2003, pp. 250. Zbl1247.81006
  39. [39] G. Tenenbaum, M. Tucsnak, K. Ramdani, T. Takahashi, A spectral approach for the exact observability of infinite dimensional systems with skew-adjoint generator, J. Funct. Anal., 2007. Zbl1140.93395MR2158180
  40. [40] Turinici G., On the controllability of bilinear quantum systems, in: Defranceschi M., Le Bris C. (Eds.), Mathematical Models and Methods for ab initio Quantum Chemistry, Lecture Notes in Chemistry, vol. 74, Springer, 2000. Zbl1007.81019MR1857459
  41. [41] Zuazua E., Remarks on the controllability of the Schrödinger equation, in: Quantum Control: Mathematical and Numerical Challenges, CRM Proc. Lecture Notes, vol. 33, Amer. Math. Soc., Providence, RI, 2003, pp. 193-211. MR2043529

Citations in EuDML Documents

  1. Alfio Borzì, Quantum optimal control using the adjoint method
  2. Mazyar Mirrahimi, Lyapunov control of a quantum particle in a decaying potential
  3. Luis Alberto Fernández, Alexander Yuri Khapalov, Controllability properties for the one-dimensional Heat equation under multiplicative or nonnegative additive controls with local mobile support
  4. Sylvain Ervedoza, Jean-Pierre Puel, Approximate controllability for a system of Schrödinger equations modeling a single trapped ion
  5. Yannick Privat, Mario Sigalotti, The squares of the Laplacian-Dirichlet eigenfunctions are generically linearly independent

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.