Scindement d’une équivalence d’homotopie en dimension 3

Harrie Hendriks; François Laudenbach

Annales scientifiques de l'École Normale Supérieure (1974)

  • Volume: 7, Issue: 2, page 203-217
  • ISSN: 0012-9593

How to cite

top

Hendriks, Harrie, and Laudenbach, François. "Scindement d’une équivalence d’homotopie en dimension $3$." Annales scientifiques de l'École Normale Supérieure 7.2 (1974): 203-217. <http://eudml.org/doc/81936>.

@article{Hendriks1974,
author = {Hendriks, Harrie, Laudenbach, François},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {fre},
number = {2},
pages = {203-217},
publisher = {Elsevier},
title = {Scindement d’une équivalence d’homotopie en dimension $3$},
url = {http://eudml.org/doc/81936},
volume = {7},
year = {1974},
}

TY - JOUR
AU - Hendriks, Harrie
AU - Laudenbach, François
TI - Scindement d’une équivalence d’homotopie en dimension $3$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1974
PB - Elsevier
VL - 7
IS - 2
SP - 203
EP - 217
LA - fre
UR - http://eudml.org/doc/81936
ER -

References

top
  1. [C 1] S. CAPPELL, A splitting theorem for manifolds and surgery groups (Bull. Amer. Math. Soc., vol. 77, 1971, p. 281-286). Zbl0215.52601MR44 #2234
  2. [C 2] S. CAPPELL, Splitting obstructions for Hermitian forms and manifolds with Z2 ⊂ π 1, (Bull. Amer. Math. Soc., vol. 79, 1973, p. 909-913). Zbl0272.57016MR49 #3987
  3. [C 3] J. CERF, Sur les difféomorphismes de la sphère de dimension 3 (Γ4 = 0) (Lect. Notes in Math., n° 53, Springer, 1968). Zbl0164.24502MR37 #4824
  4. [G 1] I. GRUSHKO, On the bases of a free product of groups (Mat. Sbornik, vol. 8, 1940, p. 169-182). Zbl0023.30102JFM66.0066.02
  5. [H 1] W. HEIL, On P²-irreducible 3-manifolds (Bull. Amer. Math. Soc., vol. 75, 1969, p. 772-775). Zbl0176.21401MR40 #4958
  6. [H 2] H. HENDRIKS, Une obstruction pour scinder une équivalence d'homotopie en dimension 3 (à paraître). Zbl0335.57005
  7. [H 3] H. HENDRIKS, Applications de la théorie d'obstruction en dimension 3 (C. R. Acad. Sc., Paris, t. 276, série A, 1973, p. 1101-1104). Zbl0257.57001MR47 #7744
  8. [H 4] H. HENDRIKS et F. LAUDENBACH, Scindement d'une équivalence d'homotopie en dimension 3 (C. R. Acad. Sc., Paris, t. 276, série A, 1973, p. 1275-1278). Zbl0255.57004MR47 #7745
  9. [H 5] P. J. HILTON, On the homotopy groups of the union of spheres (J. London Math. Soc., vol., 30, 1955, p. 154-171). Zbl0064.17301MR16,847d
  10. [H 6] M. HIRSCH et S. SMALE, On involutions of the 3-sphere (Amer. J. Math., vol. 81, 1959, p. 893-900). Zbl0090.39204MR22 #1909
  11. [K 1] KNESER, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten (J. B. Deutsch. Math. Verein, vol. 38, 1929, p. 248-260). Zbl55.0311.03JFM55.0311.03
  12. [L 1] F. LAUDENBACH, Sur les 2-sphères d'une variété de dimension 3 (Ann. of Math., vol. 97, 1973, p. 57-81). Zbl0246.57003MR47 #2606
  13. [L 2] F. LAUDENBACH, Topologie de la dimension 3: homotopie et isotopie, (Astérisque, vol. 12, 1974). Zbl0293.57004MR50 #8527
  14. [L 3] G. LIVESAY, Fixed point free involutions on the 3-sphere (Ann. of Math., vol. 72, 1960, p. 603-611). Zbl0096.17302MR22 #7131
  15. [P 1] C. PAPAKYRIAKOPOULOS, On Dehn's lemma and the asphericity of knots (Ann. of Math., vol. 66, 1957, p. 1-26). Zbl0078.16402MR19,761a
  16. [S 1] E. SPECKER, Die erste Cohomologiegruppe von Ueberlagerungen und Homotopie-Eigenschaften dreidimensionaler Mannigfaltigkeiten (Comment. Math. Helv., vol. 23, 1949, p. 303-333). Zbl0036.12803MR11,451a
  17. [S 2] J. STALLINGS, Group theory and three dimensional manifolds, Yale University Press, 1971. Zbl0241.57001
  18. [S 3] G. A. SWARUP, On embedded spheres in 3-manifolds (Math. Ann., vol. 203, 1973, p. 89-102). Zbl0241.55017MR48 #7252
  19. [S 4] G. A. SWARUP, On a theorem of C. B. Thomas (J. London Math. Soc., vol. 8, 1974, p. 13-21). Zbl0281.57003MR49 #6225
  20. [T 1] C. B. THOMAS, The oriented homotopy type of compact 3 manifolds (Proc. London Math. Soc., vol. 19, 1969, p. 31-44). Zbl0167.21502MR40 #2088
  21. [W 1] F. WALDHAUSEN, On irreducible 3-manifolds which are sufficiently large (Ann. of Math., vol. 87, 1968, p. 56-88). Zbl0157.30603MR36 #7146

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.