Lifting differential operators from orbit spaces

Gerald W. Schwarz

Annales scientifiques de l'École Normale Supérieure (1995)

  • Volume: 28, Issue: 3, page 253-305
  • ISSN: 0012-9593

How to cite

top

Schwarz, Gerald W.. "Lifting differential operators from orbit spaces." Annales scientifiques de l'École Normale Supérieure 28.3 (1995): 253-305. <http://eudml.org/doc/82383>.

@article{Schwarz1995,
author = {Schwarz, Gerald W.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {quotient spaces; algebraic differential operator},
language = {eng},
number = {3},
pages = {253-305},
publisher = {Elsevier},
title = {Lifting differential operators from orbit spaces},
url = {http://eudml.org/doc/82383},
volume = {28},
year = {1995},
}

TY - JOUR
AU - Schwarz, Gerald W.
TI - Lifting differential operators from orbit spaces
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1995
PB - Elsevier
VL - 28
IS - 3
SP - 253
EP - 305
LA - eng
KW - quotient spaces; algebraic differential operator
UR - http://eudml.org/doc/82383
ER -

References

top
  1. [AP] E. ANDREEV and V. POPOV, Stationary subgroups of points of general position in the representation space of a semisimple Lie group (Functional Anal. Appl., Vol. 5, 1971, pp. 265-271). Zbl0246.22017MR45 #268
  2. [AVE] E. ANDREEV, E. VINBERG and A. ELASHVILI, Orbits of greatest dimension in semisimple linear Lie groups (Functional Anal. Appl., Vol. 1, 1967, pp. 257-261). Zbl0176.30301
  3. [BGG] I. N. BERNSTEIN, I. M. GEL'FAND and S. I. GEL'FAND, Differential operators on the cubic cone (Russian Math. Surveys, Vol. 27, 1972, pp. 169-174). Zbl0257.58010MR52 #6024
  4. [Bj] J.-E. BJÖRK, Rings of Differential Operators, North-Holland, Amsterdam, 1979. Zbl0499.13009
  5. [Br] M. BRION, Sur les modules de covariants (Ann. Sci. École Norm. Sup., Vol. 26, 1993, pp. 1-21). Zbl0781.13002MR95c:14062
  6. [BE] D. BUCHSBAUM and D. EISENBUD, What makes a complex exact ? (Jour. of Alg., Vol. 25, 1973, pp. 259-268). Zbl0264.13007MR47 #3369
  7. [D] J. DIEUDONNÉ, Topics in Local Algebra, Notre Dame Mathematical Lectures No. 10, University of Notre Dame Press, 1967. Zbl0193.00101MR39 #2748
  8. [El1] A. ELASHVILI, Canonical form and stationary subalgebras of points of general position for simple linear Lie groups (Functional Anal. Appl., Vol. 6, 1972, pp. 44-53). Zbl0252.22015MR46 #3689
  9. [El2] A. ELASHVILI, Stationary subalgebras of points of the common state for irreducible linear Lie groups (Functional Anal. Appl., Vol. 6, 1972, pp. 139-148). Zbl0252.22016
  10. [Go] N. GORDEEV, Coranks of elements of linear groups and the complexity of algebras of invariants (Leningrad Math. J., Vol. 2, 1991, pp. 245-267). Zbl0717.20032MR91h:20063
  11. [Gr1] A. GROTHENDIECK, Torsion homologique et sections rationnelles, Séminaire Chevalley 1958, exposé n° 5. 
  12. [Gr2] A. GROTHENDIECK, Éléments de Géométrie Algébrique : Étude locale des schémas et des morphismes de schémas (Publ. Math. IHES, Vol. 32, 1967, pp. 1-361). Zbl0153.22301MR39 #220
  13. [HS] P. J. HILTON and U. STAMMBACH, A course in Homological Algebra, Graduate Texts in Mathematics 4, Springer-Verlag, New York, 1971. Zbl0238.18006MR49 #10751
  14. [Ho] R. HOWE, Remarks on classical invariant theory (Trans. AMS, Vol. 313, 1989, pp. 539-570). Zbl0674.15021MR90h:22015a
  15. [Ish] Y. ISHIBASHI, Nakai's conjecture for invariant subrings (Hiroshima Math. J., Vol. 15, 1985, pp. 429-436). Zbl0586.13019MR87b:13003
  16. [Ka] J.-M. KANTOR, Formes et opérateurs différentiels sur les espaces analytiques complexes (Bull. Soc. Math. France, Mémoire, Vol. 53, 1977, pp. 5-80). Zbl0376.32001MR58 #6332
  17. [Ke] G. KEMPF, Some quotient surfaces are smooth (Mich. Math. Jour., Vol. 27, 1980, pp. 295-299). Zbl0465.14018MR81m:14009
  18. [Kn] F. KNOP, Über die Glattheit von Quotientenabbildungen (Manuscripta Math., Vol. 56, 1986, pp. 410-427). Zbl0585.14033MR88f:14041
  19. [Kr1] H. KRAFT, Geometrische Methoden in der Invariantentheorie, Vieweg-Verlag, Braunschweig, 1985. Zbl0669.14003
  20. [Kr2] H. KRAFT, G-vector bundles and the linearization problem (Group Actions and Invariant Theory, Can. Math. Soc. Conf. Proc., Vol. 10, 1989, pp. 111-123). Zbl0703.14009MR90j:14062
  21. [Le1] T. LEVASSEUR, Anneaux d'opérateurs différentiels, Séminaire Dubreil-Malliavin (1980) (Lecture Notes in Mathematics, Vol. 867, 1981, pp. 157-173). Zbl0507.14012MR84j:32009
  22. [Le2] T. LEVASSEUR, Relèvements d'opérateurs différentiels sur les anneaux d'invariants, Operator Algebras, Unitary Representations, Enveloping Algebras and Invariant Theory (Progress in Mathematics, Vol. 92, Birkhäuser, Boston, 1990, pp. 449-470). Zbl0733.16009MR92f:16033
  23. [LS] T. LEVASSEUR and J. T. STAFFORD, Rings of differential operators on classical rings of invariants (Memoirs of the AMS, Vol. 412, 1989). Zbl0691.16019MR90i:17018
  24. [Li] P. LITTELMANN, Koreguläre und äquidimensionale Darstellungen (Jour. of Alg. Vol. 123, 1989, pp. 193-222). Zbl0688.14042MR90e:20039
  25. [Lu1] D. LUNA, Slices étales (Bull. Soc. Math. France, Mémoire, Vol. 33, 1973, pp. 81-105). Zbl0286.14014MR49 #7269
  26. [Lu2] D. LUNA, Adhérences d'orbite et invariants (Invent. Math., Vol. 29, 1975, pp. 231-238). Zbl0315.14018MR51 #12879
  27. [LR] D. LUNA and R. W. RICHARDSON, A generalization of the Chevalley restriction theorem (Duke Math. J., Vol. 46, 1979, pp. 487-496). Zbl0444.14010MR80k:14049
  28. [Ma] H. MATSUMURA, Commutative Algebra, Second Edition, Benjamin/Cummings, 1980. Zbl0441.13001MR82i:13003
  29. [MR] J. C. MCCONNELL and J. C. ROBSON, Noncommutative Noetherian Rings, Wiley, New York, 1987. Zbl0644.16008MR89j:16023
  30. [MumF] D. MUMFORD and J. FOGARTY, Geometric Invariant Theory, 2nd edn., Springer Verlag, New York, 1982. Zbl0504.14008
  31. [Mu] I. MUSSON, Rings of differential operators on invariant rings of tori (Trans. Amer. Math. Soc., Vol. 303, 1987, pp. 805-827). Zbl0628.13019MR88m:32019
  32. [Po1] V. POPOV, Stability criteria for the action of a semi-simple group on a factorial manifold (Math. USSR-Izvestija, Vol. 4, 1970, pp. 527-535). Zbl0261.14011
  33. [Po2] V. POPOV, A finiteness theorem for representations with a free algebra of invariants (Math. USSR-Izv., Vol. 20, 1983, pp. 333-354). Zbl0547.20034
  34. [PS] C. PROCESI and G. SCHWARZ, Inequalities defining orbit spaces (Inv. Math., Vol. 81, 1985, pp. 539-554). Zbl0578.14010MR87h:20078
  35. [Re] R. RESCO, Affine domains of finite Gelfand-Kirillov dimension which are right, but not left, noetherian (Bull. London Math. Soc., Vol. 16, 1984, pp. 590-594). Zbl0547.16007MR85k:16047
  36. [S1] G. SCHWARZ, Representations of simple groups with a regular ring of invariants (Invent. Math., Vol. 49, 1978, pp. 167-191). Zbl0391.20032MR80m:14032
  37. [S2] G. SCHWARZ, Representations of simple Lie groups with a free module of covariants (Invent. Math., Vol. 50, 1978, pp. 1-12). Zbl0391.20033MR80c:14008
  38. [S3] G. SCHWARZ, Lifting smooth homotopies of orbit spaces (Publ. Math. IHES, Vol. 51, 1980, pp. 37-135). Zbl0449.57009MR81h:57024
  39. [S4] G. SCHWARZ, Invariant theory of G2 and Spin7 (Comment. Math. Helv., Vol. 63, 1988, pp. 624-663). Zbl0664.14006MR89k:14080
  40. [S5] G. SCHWARZ, Exotic algebraic group actions (C. R. Acad. Sci. Paris, Vol. 309, 1989, pp. 89-94). Zbl0688.14040MR91b:14066
  41. [S6] G. SCHWARZ, Differential operators and orbit spaces, Proceedings of the Hyderabad Conference on Algebraic Groups, Manoj Prakashan, Madras, 1991, pp. 509-516. Zbl0844.14021MR1131325
  42. [S7] G. SCHWARZ, Differential operators on quotients of simple groups, Jour. of Alg., Vol. 169, 1994, pp. 248-273. Zbl0835.14019MR95i:16027
  43. [Se] J.-P. SERRE, Algèbre Locale. Multiplicités, Lecture Notes in Mathematics, No. 11, Springer-Verlag, New York, 1965. Zbl0142.28603MR34 #1352
  44. [Sl] P. SLODOWY, Der Scheibensatz für algebraische Transformationsgruppen, Algebraic Transformation Groups and Invariant Theory, DMV Seminar, Vol. 13, Birkhäuser Verlag, Basel-Boston, 1989, pp. 89-113. Zbl0722.14031MR1044587
  45. [SmSt] S. P. SMITH and J. T. STAFFORD, Differential operators on an affine curve (Proc. London Math. Soc., Vol. 56, 1988, pp. 229-259). Zbl0672.14017MR89d:14039
  46. [Sw] M. E. SWEEDLER, Groups of simple algebras (Publ. Math. IHES, Vol. 44, 1974, pp. 79-190). Zbl0314.16008MR51 #587
  47. [VdB] M. VAN den BERGH, Differential operators on semi-invariants for tori and weighted projective spaces, Séminaire Malliavin (1990) (Lecture Notes in Mathematics, Vol. 1478, 1992, pp. 255-272). Zbl0802.13005MR93h:16046
  48. [Vi] E. B. VINBERG, Complexity of actions of reductive groups (Functional Anal. Appl. Vol. 20, 1986, pp. 1-11). Zbl0601.14038MR87j:14077
  49. [We] D. WEHLAU, Some recent results on the Popov conjecture, Group Actions and Invariant Theory, CMS Conference Proceedings, Vol. 10, 1989, pp. 221-228. Zbl0746.20023MR90m:14044
  50. [Weyl] H. WEYL, The Classical Groups, 2nd ed., Princeton University Press, Princeton, 1946. Zbl1024.20502

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.