Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor

Francisco J. Calderón-Moreno

Annales scientifiques de l'École Normale Supérieure (1999)

  • Volume: 32, Issue: 5, page 701-714
  • ISSN: 0012-9593

How to cite

top

Calderón-Moreno, Francisco J.. "Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor." Annales scientifiques de l'École Normale Supérieure 32.5 (1999): 701-714. <http://eudml.org/doc/82499>.

@article{Calderón1999,
author = {Calderón-Moreno, Francisco J.},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Malgrange-Kashiwara filtration; logarithmic derivation; Spencer complex; Koszul free divisor; ring of differential operators; perverse logarithmic de Rham complex},
language = {eng},
number = {5},
pages = {701-714},
publisher = {Elsevier},
title = {Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor},
url = {http://eudml.org/doc/82499},
volume = {32},
year = {1999},
}

TY - JOUR
AU - Calderón-Moreno, Francisco J.
TI - Logarithmic differential operators and logarithmic de Rham complexes relative to a free divisor
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1999
PB - Elsevier
VL - 32
IS - 5
SP - 701
EP - 714
LA - eng
KW - Malgrange-Kashiwara filtration; logarithmic derivation; Spencer complex; Koszul free divisor; ring of differential operators; perverse logarithmic de Rham complex
UR - http://eudml.org/doc/82499
ER -

References

top
  1. [1] J.E. BJÖRK, Rings of Differential Operators, (North Holland, Amsterdam, 1979). Zbl0499.13009
  2. [2] N. BOURBAKI, Algèbre Commutative, Chapitres 3 et 4, (Actualités Scientifiques et Industrielles, Vol. 1293, Hermann, Paris, 1967). 
  3. [3] C. BĂNICĂ and O. STĂNĂSILĂ, Algebraic methods in the global theory of complex spaces, (John Wiley, New York, 1976). Zbl0334.32001
  4. [4] F.J. CALDERÓN-MORENO, Quelques propriétés de la V-filtration relative à un diviseur libre, (Comptes Rendus Acad. Sci. Paris, t. 323, Série I, 1996, pp. 377-381). Zbl0862.32006MR97i:32048
  5. [5] F.J. CALDERÓN-MORENO, D. MOND, L. NARVÁEZ-MACARRO and F.J. CASTRO-JIMÉNEZ, Logarithmic Cohomology of the complement of a Plane Curve. (Preprint, Univ. of Warwick, 1999). Zbl1010.32016
  6. [6] F.J. CASTRO-JIMÉNEZ, D. MOND and L. NARVÁEZ-MACARRO, Cohomology of the complement of a free divisor, (Transactions of the A.M.S., Vol. 348, 1996, pp. 3037-3049). Zbl0862.32021MR96k:32072
  7. [7] J. DAMON, Higher multiplicities and Almost Free Divisor and Complete Intersections, (Memoirs of the A.M.S., Vol. 589, 1996). Zbl0867.32015MR97d:32050
  8. [8] P. DELIGNE, Equations Différentielles à Points Singuliers Réguliers, (Lect. Notes in Math, Vol. 163, Springer-Verlag, 1987). Zbl0244.14004MR54 #5232
  9. [9] H. ESNAULT and E. VIEHWEG, Logarithmic De Rham complexes and vanishing theorems. Invent. Math., Vol. 86, 1986, pp. 161-194). Zbl0603.32006MR87j:32088
  10. [10] C. GODBILLON, Géométrie Différentielle et Mécanique Analytique. (Collection Méthodes, Hermann, Paris, 1969). Zbl0174.24602MR39 #3416
  11. [11] M. KASHIWARA, Vanishing cycle sheaves and holonomic systems of differential equations, (Lect. Notes in Math, Vol. 1012, 1983, pp. 134-142). Zbl0566.32022MR85e:58137
  12. [12] B. MALGRANGE, Le polynôme de Bernstein-Sato et cohomologie évanescente, (Astérisque, Vol. 101-102, 1983, pp. 233-267). Zbl0528.32007MR86f:58148
  13. [13] Z. MEBKHOUT, Le formalisme des six opérations de Grothendieck pour les Dx-modules cohérents, (Travaux en cours, Vol. 35, 1989, Hermann, Paris). Zbl0686.14020MR90m:32026
  14. [14] F. PHAM, Singularités des systèmes de Gauss-Manin, (Progress in Math, Vol. 2, Birkhäuser, 1979). Zbl0524.32015MR81h:32015
  15. [15] G.S. RINEHART, Differential forms on general commutative algebras, (Trans. A.M.S., Vol. 108, 1963, pp. 195-222). Zbl0113.26204MR27 #4850
  16. [16] K. SAITO, On the uniformization of complements of discriminant loci. (Preprint, Willians College, 1975). 
  17. [17] K. SAITO, Theory of logarithmic differential forms and logarithmic vector fields. (J. Fac. Sci. Univ. Tokyo, Vol. 27, 1980, pp. 265-291). Zbl0496.32007MR83h:32023
  18. [18] H. TERAO, Arrangements of hyperplanes and their freeness-I. (J. Fac. Sci. Univ. Tokyo, Vol. 27, 1980, pp. 293-312). Zbl0509.14006MR84i:32016a

Citations in EuDML Documents

top
  1. Michele Torielli, Deformations of free and linear free divisors
  2. Francisco Javier Calderón Moreno, Luis Narváez Macarro, Dualité et comparaison pour les complexes de de Rham logarithmiques par rapport aux diviseurs libres
  3. Michel Gros, Sur le 𝒟 -module associé au complexe des cycles proches et ses variantes p -adiques
  4. Tristan Torrelli, On meromorphic functions defined by a differential system of order 1
  5. G. Denham, H. Schenck, M. Schulze, M. Wakefield, U. Walther, Local cohomology of logarithmic forms

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.