Structures géométriques holomorphes sur les variétés complexes compactes

Sorin Dumitrescu

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 4, page 557-571
  • ISSN: 0012-9593

How to cite

top

Dumitrescu, Sorin. "Structures géométriques holomorphes sur les variétés complexes compactes." Annales scientifiques de l'École Normale Supérieure 34.4 (2001): 557-571. <http://eudml.org/doc/82551>.

@article{Dumitrescu2001,
author = {Dumitrescu, Sorin},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {compact complex manifolds; holomorphic Riemannian metric; geometric structures; rigidity; Kähler manifolds},
language = {fre},
number = {4},
pages = {557-571},
publisher = {Elsevier},
title = {Structures géométriques holomorphes sur les variétés complexes compactes},
url = {http://eudml.org/doc/82551},
volume = {34},
year = {2001},
}

TY - JOUR
AU - Dumitrescu, Sorin
TI - Structures géométriques holomorphes sur les variétés complexes compactes
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 4
SP - 557
EP - 571
LA - fre
KW - compact complex manifolds; holomorphic Riemannian metric; geometric structures; rigidity; Kähler manifolds
UR - http://eudml.org/doc/82551
ER -

References

top
  1. [1] Akhiezer D., Lie Group Actions in Complex Analysis, Aspects of Mathematics, 1995. Zbl0845.22001MR1334091
  2. [2] Beauville A., Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom.18 (1983) 755-782. Zbl0537.53056MR730926
  3. [3] Benoist Y., Orbites des structures rigides (d'après M. Gromov), in: Feuilletages et Systèmes Intégrables (Montpellier, 1995), Birkhäuser, Boston, 1997, pp. 1-17. Zbl0880.58031MR1432904
  4. [4] Bogomolov F., Classification of surfaces of class VII0 with b2=0, Math. USSR Izvestija10 (2) (1976) 255-269. Zbl0352.32020
  5. [5] Bogomolov F., Holomorphic tensors and vector bundles on projective varieties, Math. USSR Izvestija13 (3) (1979) 499-555. Zbl0439.14002
  6. [6] Bryant R., Chern S., Gardner R., Goldschmidt H., Griffiths P., Exterior Differential Systems, M.S.R.I. Publications, 18, Springer-Verlag, 1991. Zbl0726.58002MR1083148
  7. [7] Campana F., Demailly J.-P., Peternell T., The algebraic dimension of compact complex threefolds with vanishing second Betti number, Compositio Math.112 (1) (1998) 77-91. Zbl0910.32032MR1622747
  8. [8] Dumitrescu S., Structures géométriques holomorphes, Thèse E.N.S.-Lyon, 1999. MR1735886
  9. [9] Fulton W., Harris J., Representation Theory, Graduate Texts in Mathematics, 129, Springer-Verlag, 1991. Zbl0744.22001MR1153249
  10. [10] Ghys É., Déformations des structures complexes sur les espaces homogènes de SL(2,C), J. Reine Angew. Math.468 (1995) 113-138. Zbl0868.32023MR1361788
  11. [11] Ghys É., Feuilletages holomorphes de codimension un sur les espaces homogènes complexes, Ann. Fac. Sci. Toulouse Math. (6)5 (3) (1996) 493-519. Zbl0877.57014MR1440947
  12. [12] Grauert H., Remmert R., Über kompakte homogene komplexe Mannigfaltigkeiten, Arch. Math.13 (1962) 498-507. Zbl0118.37402MR145558
  13. [13] Gromov M., Rigid transformation groups, in: Bernard D., Choquet-Bruhat Y. (Eds.), Géométrie Différentielle, Vol. 33, Hermann, 1988, pp. 65-139. Zbl0652.53023MR955852
  14. [14] Horst C., Kobayashi S., Topics in complex differential geometry, DMV Semin3 (1983) 1-64. Zbl0506.53029MR826252
  15. [15] Huckleberry A., Kebekus S., Peternell T., Group actions on S6 and complex structures on P3(C), Duke Math. J.102 (1) (2000) 101-124. Zbl0971.53024MR1741779
  16. [16] Humpreys J., Linear Algebraic Groups, Graduate Texts in Mathematics, 21, Springer-Verlag, 1975. Zbl0325.20039MR396773
  17. [17] Hwang J.-M., Mok N., Uniruled projective manifolds with irreducible reductive G-structure, J. Reine Angew. Math.490 (1997) 55-64. Zbl0882.22007MR1468924
  18. [18] Inoue M., Kobayashi S., Ochiai T., Holomorphic affine connections on compact complex surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math.27 (2) (1980) 247-264. Zbl0467.32014MR586449
  19. [19] Kobayashi S., First Chern class and holomorphic tensor fields, Nagoya Math. J.77 (1980) 5-11. Zbl0432.53049MR556302
  20. [20] Kobayashi S., The first Chern class and holomorphic symmetric tensor fields, J. Math. Soc. Japan32 (2) (1980) 325-329. Zbl0447.53055MR567422
  21. [21] Kolar I., Michor P., Slovak J., Natural Operations in Differential Geometry, Springer-Verlag, 1991. Zbl0782.53013MR1202431
  22. [22] Lescure F., Sur certains espaces fibrés kaehlériens, J. Math. Pures et Appl.57 (1978) 181-190. Zbl0442.14001MR499333
  23. [23] Malgrange B., L'involutivité générique des systèmes différentiels analytiques, C. R. Acad. Sci. Paris, Série 1326 (1998) 863-866. Zbl0924.58116MR1648544
  24. [24] Moishezon B., On n dimensional compact varieties with n independent meromorphic functions, Amer. Math. Soc. Transl.63 (1967) 51-77. Zbl0186.26204
  25. [25] Mumford D., Introduction to Algebraic Geometry, Harvard University, 1966. 
  26. [26] Nomizu K., On local and global existence of Killing vector fields, Ann. of Math. (2)72 (1960) 105-120. Zbl0093.35103MR119172
  27. [27] Popov V., Vinberg E., Invariant theory, Algebraic Geometry 4, E.M.S.55 (1991) 123-280. Zbl0789.14008
  28. [28] Yau S.T., On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation I, Comm. Pure Appl. Math.31 (3) (1978) 339-411. Zbl0369.53059

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.