Magnetic bottles for the Neumann problem : curvature effects in the case of dimension 3 (general case)
Bernard Helffer; Abderemane Morame
Annales scientifiques de l'École Normale Supérieure (2004)
- Volume: 37, Issue: 1, page 105-170
- ISSN: 0012-9593
Access Full Article
topHow to cite
topHelffer, Bernard, and Morame, Abderemane. "Magnetic bottles for the Neumann problem : curvature effects in the case of dimension 3 (general case)." Annales scientifiques de l'École Normale Supérieure 37.1 (2004): 105-170. <http://eudml.org/doc/82625>.
@article{Helffer2004,
author = {Helffer, Bernard, Morame, Abderemane},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {magnetic bottles; Ginzburg-Landau functional; Neumann condition; superconductivity},
language = {eng},
number = {1},
pages = {105-170},
publisher = {Elsevier},
title = {Magnetic bottles for the Neumann problem : curvature effects in the case of dimension 3 (general case)},
url = {http://eudml.org/doc/82625},
volume = {37},
year = {2004},
}
TY - JOUR
AU - Helffer, Bernard
AU - Morame, Abderemane
TI - Magnetic bottles for the Neumann problem : curvature effects in the case of dimension 3 (general case)
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2004
PB - Elsevier
VL - 37
IS - 1
SP - 105
EP - 170
LA - eng
KW - magnetic bottles; Ginzburg-Landau functional; Neumann condition; superconductivity
UR - http://eudml.org/doc/82625
ER -
References
top- [1] Agmon S., Lectures on Exponential Decay of Solutions of Second Order Elliptic Equations, Math. Notes, vol. 29, Princeton University Press, 1982. Zbl0503.35001MR745286
- [2] Bauman P., Phillips D., Tang Q., Stable nucleation for the Ginzburg–Landau system with an applied magnetic field, IMA Preprint Series 1416 (1996) , Arch. Rational Mech. Anal.142 (1998) 1-43. Zbl0922.35157MR1629119
- [3] Bernoff A., Sternberg P., Onset of superconductivity in decreasing fields for general domains, J. Math. Phys.39 (1998) 1272-1284. Zbl1056.82523MR1608449
- [4] Bolley C., Modélisation du champ de retard à la condensation d'un supraconducteur par un problème de bifurcation, M26 (2) (1992) 235-287. Zbl0741.35085MR1153002
- [5] E.B. Davies, Spectral Theory and Differential Operators, in: Cambridge Studies in Advanced Mathematics. Zbl0893.47004
- [6] Dauge M., Helffer B., Eigenvalues variation I, Neumann problem for Sturm–Liouville operators, J. Differential Equations104 (2) (1993) 243-262. Zbl0784.34021MR1231468
- [7] Dierkes U., Hildebrandt S., Kuster A., Wohlrab O., Minimal Surfaces I, Springer-Verlag, Berlin, 1992. Zbl0777.53012MR1215267
- [8] Helffer B., Introduction to the Semiclassical Analysis for the Schrödinger Operator and Applications, Springer Lecture Notes in Math., vol. 1336, 1988. Zbl0647.35002MR960278
- [9] Helffer B., Semi-classical analysis for the Schrödinger operator with magnetic wells (after R. Montgomery, B. Helffer and A. Mohamed), in: Proceedings of the Conference in Minneapolis, IMA Volumes in Mathematics and its Applications, vol. 95, Springer-Verlag, 1997, pp. 99-114. Zbl0887.35131MR1477211
- [10] Helffer B., Bouteilles magnétiques et supraconductivité (d'après Helffer–Morame, Lu–Pan et Helffer–Pan), Séminaire EDP de l'École Polytechnique 2000–2001, Reprint , http://www.math.polytechnique.fr. Zbl1222.82086MR1860683
- [11] Helffer B., Mohamed A., Semiclassical analysis for the ground state energy of a Schrödinger operator with magnetic wells, J. Funct. Anal.138 (1) (1996) 40-81. Zbl0851.58046MR1391630
- [12] Helffer B., Morame A., Magnetic bottles in connection with superconductivity, J. Funct. Anal.185 (2) (2001) 604-680. Zbl1078.81023MR1856278
- [13] Helffer B., Morame A., Magnetic bottles in connection with superconductivity: Case of dimension 3, Proc. Indian Acad. Sci. (Math. Sci.)112 (1) (2002). Zbl1199.81016MR1894543
- [14] B. Helffer, A. Morame, Magnetic bottles for the Neumann problem: Curvature effects in the case of dimension 3, Preprint mp_arc 01-362, 2001. Zbl1057.35061MR1856278
- [15] B. Helffer, A. Morame, Magnetic bottles for the Neumann problem: Curvature effects in the case of dimension 3, general case, Preprint mp_arc 02-145, 2002. Zbl1199.81016
- [16] Helffer B., Nourrigat J., Hypoellipticité maximale pour des opérateurs polynômes de champs de vecteurs, Progress in Mathematics, vol. 58, Birkhäuser, 1985. Zbl0568.35003MR897103
- [17] Helffer B., Pan X.-B., Upper critical field and location of surface nucleation of superconductivity, Annales de l'Institut Henri Poincaré (Analyse Non Linéaire)20 (1) (2003) 145-181. Zbl1060.35132MR1958165
- [18] Helffer B., Sjöstrand J., Multiple wells in the semiclassical limit I, Comm. PDE9 (4) (1984) 337-408. Zbl0546.35053MR740094
- [19] Lu K., Pan X.-B., Estimates of the upper critical field for the Ginzburg–Landau equations of superconductivity, Phys. D127 (1999) 73-104. Zbl0934.35174MR1678383
- [20] Lu K., Pan X.-B., Eigenvalue problems of Ginzburg–Landau operator in bounded domains, J. Math. Phys.40 (6) (1999) 2647-2670. Zbl0943.35058MR1694223
- [21] Lu K., Pan X.-B., Gauge invariant eigenvalue problems on R2 and R2+, Trans. Amer. Math. Soc.352 (3) (2000) 1247-1276. Zbl1053.35124MR1675206
- [22] Lu K., Pan X.-B., Ginzburg–Landau system and surface nucleation of superconductivity, in: Proceeding of the IMS Workshop on Reaction-Diffusion systems, Chinese University of Hong-Kong, 1999.
- [23] Lu K., Pan X.-B., Surface nucleation of superconductivity in 3-dimension, J. Differential Equations168 (2) (2000) 386-452. Zbl0972.35152MR1808455
- [24] Montgomery R., Hearing the zerolocus of a magnetic field, Comm. Math. Phys.168 (1995) 651-675. Zbl0827.58076MR1328258
- [25] Pan X.-B., Upper critical field for superconductors with edges and corners, Calc. Var. PDE14 (2002) 447-482. Zbl1006.35090MR1911825
- [26] X.-B. Pan, Surface conductivity in 3 dimensions, Personal communication, October 2001, Unpublished.
- [27] Pan X.-B., Kwek K.-H., Schrödinger operators with non-degenerately vanishing magnetic fields in bounded domain, Trans. Amer. Math. Soc.354 (10) (2002) 4201-4227. Zbl1004.35110MR1926871
- [28] del Pino M., Felmer P.L., Sternberg P., Boundary concentration for eigenvalue problems related to the onset of superconductivity, Comm. Math. Phys.210 (2000) 413-446. Zbl0982.35077MR1776839
- [29] Reed M., Simon B., Methods of modern Mathematical Physics, IV: Analysis of Operators, Academic Press, New York, 1978. Zbl0401.47001MR493421
- [30] Saint-James D., Sarma G., Thomas E.J., Type II Superconductivity, Pergamon, Oxford, 1969.
- [31] Spivak M., Differential Geometry, Publish or Perish, Houston, 1975.
- [32] Thaller B., The Dirac Equation, Texts and Monographs in Physics, Springer-Verlag, 1992. Zbl0765.47023MR1219537
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.