Effet tunnel pour l'équation de Schrödinger avec champ magnétique
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1987)
- Volume: 14, Issue: 4, page 625-657
- ISSN: 0391-173X
Access Full Article
topHow to cite
topHelffer, B., and Sjöstrand, J.. "Effet tunnel pour l'équation de Schrödinger avec champ magnétique." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 14.4 (1987): 625-657. <http://eudml.org/doc/84021>.
@article{Helffer1987,
author = {Helffer, B., Sjöstrand, J.},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {Schrödinger equation; magnetic field; tunnel effect},
language = {fre},
number = {4},
pages = {625-657},
publisher = {Scuola normale superiore},
title = {Effet tunnel pour l'équation de Schrödinger avec champ magnétique},
url = {http://eudml.org/doc/84021},
volume = {14},
year = {1987},
}
TY - JOUR
AU - Helffer, B.
AU - Sjöstrand, J.
TI - Effet tunnel pour l'équation de Schrödinger avec champ magnétique
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1987
PB - Scuola normale superiore
VL - 14
IS - 4
SP - 625
EP - 657
LA - fre
KW - Schrödinger equation; magnetic field; tunnel effect
UR - http://eudml.org/doc/84021
ER -
References
top- [AH - BO] Y. Aharonov - D. Bohm, Significance of Electromagnetic Potentials in the Quantum Theory. The Physical Review vol. 115 (3), Aug. 1959. Zbl0099.43102MR110458
- [A - H - S] J. Avron - I. Herbst - B. Simon, Schrödinger Operators with Magnetic Fields.
- [1] General Interactions. Duke Math. J. vol.45 (4), Déc. 1978.
- [2] Separation of Center of Mass in Homogeneous Magnetic Fields. Ann. Physics114, pp. 431-451 (1978). Zbl0409.35027MR507741
- [3] Atoms in Homogeneous Magnetic Fields. Comm. Math. Phys. 79 pp. 529-572 (1981). Zbl0464.35086MR623966
- [C - S - S] J-M. Combes - R. Schrader - R. Seiler, Classical Bounds and Limits for Energy Distributions of Hamilton Operators in Electromagnetic Fields. Ann. Physics111, pp. 1-18 (1978). MR489509
- [HE] B. Helffer, An introduction to Semi Classical Analysis for the Schrôdinger Operator. Cours en Chine. (A paraître Lecture Notes in Mathematics1988).
- [HE - RO] B. Helffer - D. Robert, Calcul Fonctionnel Admissible et Applications. J. Funct. Anal.53 (3) (1983), pp. 246-268. Zbl0524.35103MR724029
- [HE - SJ] B. Helffer - J. Sjöstrand, Multiple Wells in the Semi-Classical Limit Zbl0546.35053
- [1] Comm. in P.D.E., 9 (4) (1984), pp. 337-408. MR740094
- [2] Interaction Moléculaire, Symétries, perturbation: Ann. Inst. H. Poincaré, vol. 42 (2) (1985), pp. 127-212. Zbl0595.35031MR798695
- [HE - MA - RO] B. Helffer - A. Martinez - D. Robert, Ergodicité et Limite Semiclassique (Comm. Math. Phys.). Zbl0624.58039
- [HO] L. Hörmander, The Analysis of Linear Partial Differential Equations. Tome 3, Chap. XXII - Springer.
- [HU] W. Hunziker, Schrôdinger Operators with Electric or Magnetic Fields. Proc. Int. Conf. in Math. Phys., Lausanne (1980). Zbl0471.47010MR582602
- [IV] I.V. Ivrii - Note au C.R.A.S.1986, 302 Sér I (13), pp. 467-471. MR838401
- [KA] T. Kato: [1] Israel J. Math.13 (1972) pp. 125-174. MR333833
- [2] Perturbation Theory for Linear Operators. Grundlehren der Mathematischen Wissenschaften132. Springer Verlag. Zbl0531.47014
- [ME - SJ] A. Menikoff - J. Sjöstrand.On the Eigenvalues of a class of hypoelliptic Operators. Math. Ann.235, pp. 55-85 (1978). Zbl0375.35014MR481627
- [MO] A. Mohamed.
- [SI] B. Simon: [1] Indiana Univ. Math. J.26, pp. 1067-1073 (1977). Zbl0389.47021MR461209
- [2] Semi-Classical Analysis of Low Lying Eingenvalues I. Ann. Inst. H. Poincaré t.38 (1983), pp. 295-307.
- [3] Semi-Classical Analysis of Low Lying Eingenvalues II. Tunneling. Ann. of Math. (1984) vol. 20, pp. 89-118. Zbl0626.35070
- [SJ] J. Sjöstrand: [1] Singularités analytiques microlocales - Astérisque95 (1982). Zbl0524.35007MR699623
- [2] Analytic Wave front Sets and Operators with Multiple CharacteristicsHokkaido Math. Journal Vol. XII (3), pp. 392-433. Zbl0531.35022
- [WI] M. Wilkinson, Narrowly avoided crossings Preprint April 1986.
Citations in EuDML Documents
top- Philippe Kerdelhué, Équation de Schrödinger en dimension 2, avec potentiel et champ magnétique périodiques. Cas d'un réseau triangulaire de puits
- Gheorghe Nenciu, On exponential decay of solutions of Schrödinger and Dirac equations: bounds of eigenfunctions corresponding to energies in the gaps of essential spectrum
- B. Helffer, J. Sjöstrand, Semi-classical analysis for Harper's equation. III : Cantor structure of the spectrum
- Huirong Pi, Chunhua Wang, Multi-bump solutions for nonlinear Schrödinger equations with electromagnetic fields
- Bernard Helffer, Bouteilles magnétiques et supraconductivité
- Philippe Kerdelhué, Spectre de l'opérateur de Schrödinger magnétique avec symétrie d'ordre six
- Philippe Kerdelhue, Équation de Schrödinger magnétique périodique avec symétrie d'ordre six : mesure du spectre II
- Soeren Fournais, Bernard Helffer, Accurate eigenvalue asymptotics for the magnetic Neumann Laplacian
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.