Metric space valued functions of bounded variation

Luigi Ambrosio

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1990)

  • Volume: 17, Issue: 3, page 439-478
  • ISSN: 0391-173X

How to cite

top

Ambrosio, Luigi. "Metric space valued functions of bounded variation." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 17.3 (1990): 439-478. <http://eudml.org/doc/84082>.

@article{Ambrosio1990,
author = {Ambrosio, Luigi},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {locally compact metric space; -convergence},
language = {eng},
number = {3},
pages = {439-478},
publisher = {Scuola normale superiore},
title = {Metric space valued functions of bounded variation},
url = {http://eudml.org/doc/84082},
volume = {17},
year = {1990},
}

TY - JOUR
AU - Ambrosio, Luigi
TI - Metric space valued functions of bounded variation
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1990
PB - Scuola normale superiore
VL - 17
IS - 3
SP - 439
EP - 478
LA - eng
KW - locally compact metric space; -convergence
UR - http://eudml.org/doc/84082
ER -

References

top
  1. [1] E. Acerbi - N. Fusco, Semicontinuity problems in the Calculus of Variations. Arch. Rational Mech. Anal., 86, 125-145, 1986. Zbl0565.49010
  2. [2] L. Ambrosio, A compactness theorem for a special class of functions of bounded variation. Boll. Un. Mat. It., 3-B, 7, 857-881, 1990. Zbl0767.49001
  3. [3] L. Ambrosio, Existence theory for a new class of variational problems. To appear in Arch. Rational Mech. Anal. Zbl0711.49064
  4. [4] L. Ambrosio, Variational problems in SBV. Acta Applicandae Mathematicae, 17, 1-40, 1989. Zbl0697.49004
  5. [5] L. Ambrosio - G. Dal Maso, The chain rule for distributional derivative. Proc. Amer. Math. Soc., 108, 3, 691-702, 1990. Zbl0685.49027
  6. [6] L. Ambrosio - V.M. Tortorelli, Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. To appear in: "Communications On Pure and Applied Mathematics". Zbl0722.49020
  7. [7] L. Ambrosio - S. Mortola - V.M. Tortorelli, Functionals with linear growth defined on vector valued BV functions. To appear in "Ann. Inst. H. Poincarè". Zbl0662.49007
  8. [8] H. Attouch, Variational convergence for functions and operators. Pitman, Boston, 1984. Zbl0561.49012
  9. [9] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluids. To appear in: "Ann. Inst. H. Poincarè". Zbl0702.49009
  10. [10] A.P. Calderon - A. Zygmund, On the differentiability of functions which are of bounded variation in Tonelli's sense. Revista Union Mat. Arg., 20, 102-121, 1960. Zbl0116.31804
  11. [11] C. Castaing - M. Valadier, Convex analysis and measurable multifunctions. Lecture Notes in Math., 590, 1977. Zbl0346.46038
  12. [12] L. Cesari, Sulle funzioni a variazione limitata. Ann. Scuola Norm. Sup. Pisa, Ser. 2, Vol. 5, 1936. Zbl0014.29605JFM62.0247.03
  13. [13] G. Dal Maso - L. Modica, A general theory of variational functionals. "Topics in Functional Analysis 1980-81", Scuola Normale Superiore, Pisa, 1981. Zbl0493.49005
  14. [14] E. De Giorgi, Su una teoria generale della misura (r-1)-dimensionale in uno spazio a r dimensioni. Ann. Mat. Pura Appl., 36, 191-213, 1954. Zbl0055.28504
  15. [15] E. De Giorgi, Nuovi teoremi relativi alle misure (r-1)-dimensionali in uno spazio a r dimensioni. Ricerche Mat., 4, 95-113, 1955. Zbl0066.29903
  16. [16] E. De Giorgi - L. Ambrosio, Un nuovo tipo di funzionale del Calcolo delle Variazioni. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., 2-VIII, 82, 1989. 
  17. [17] E. De Giorgi - M. Carriero - A. Leaci, Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal., 108, 3, 193-218, 1989. Zbl0682.49002
  18. [18] E. De Giorgi - T. Franzoni, Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur., (8) 58, 842-850, 1975. Zbl0339.49005
  19. [19] H. Federer, Geometric Measure Theory. Springer Verlag, Berlin, 1969. Zbl0176.00801
  20. [20] H. Federer, A note on Gauss-Green theorem. Proc. Amer. Mat. Soc., 9, 447-451, 1958. Zbl0087.27302
  21. [21] H. Federer, Colloquium lectures on Geometric Measure Theory. Bull. Amer. Math. Soc., 84, 3, 291-338, 1978. Zbl0392.49021
  22. [22] W.H. Fleming - R. Rishel, An integral formula for total gradient variation. Arch. Math., 11, 218-222, 1960. Zbl0094.26301
  23. [23] E. Giusti, Minimal Surfaces and Functions of Bounded Variation. Birkäuser, Boston, 1984. Zbl0545.49018
  24. [24] L. Modica, The gradient theory of phase transitions and the minimal interface criterion. Arch. Rational Mech. Anal., 98, 2, 123-142, 1987. Zbl0616.76004
  25. [25] L. Modica - S. Mortola, Un esempio di Γ-convergenza. Boll. Un. Mat. Ital., 514-B, 285-299, 1977. Zbl0356.49008
  26. [26] D. Mumford - J. Shah, Boundary detection by minimizing functionals. Proc. of the IEEE conference on computer vision and pattern recognition, San Francisco, 1985. 
  27. [27] D. Mumford - J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems. Comm. on Pure and Appl. Math., 17, 4, 577-685, 1989. Zbl0691.49036
  28. [28] Y.G. Reshetnyak, Weak convergence of completely additive vector functions on a set. Siberian Math. J., 9, 1039-1045, 1968 (translation of Sibirsk Mat. Z., 9, 1386-1394, 1968). Zbl0169.18301
  29. [29] E. Stein, Singular integrals and differentiability properties of functions. Princeton University Press, 1970. Zbl0207.13501
  30. [30] P. Sternberg, The effect of a singular perturbation on Nonconvex Variational Problems. Arch. Rational Mech. Anal., 101, 209-260, 1988. Zbl0647.49021
  31. [31] A.I. Vol'pert - S.I. Huhjaev, Analysis in classes of discontinuous functions and equations of mathematical physics. Martinus Nijhoff Publisher, Dordrecht, 1985. Zbl0564.46025
  32. [32] A.I. Vol'pert, The spaces BV and quasilinear equations. Math. USSR. Sb., 17, 225-267, 1967. Zbl0168.07402
  33. [33] W.P. Ziemer, Weakly differentiable functions. Springer Verlag, Berlin, 1989. Zbl0692.46022

Citations in EuDML Documents

top
  1. Robert L. Jerrard, A new proof of the rectifiable slices theorem
  2. Mariano Giaquinta, Domenico Mucci, The BV-energy of maps into a manifold : relaxation and density results
  3. Riccarda Rossi, Alexander Mielke, Giuseppe Savaré, A metric approach to a class of doubly nonlinear evolution equations and applications
  4. Francesco Ghiraldin, Variational approximation of a functional of Mumford–Shah type in codimension higher than one
  5. Kari Astala, Mario Bonk, Juha Heinonen, Quasiconformal mappings with Sobolev boundary values

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.