On the convergence of eigenvalues for mixed formulations
Daniele Boffi; Franco Brezzi; Lucia Gastaldi
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1997)
- Volume: 25, Issue: 1-2, page 131-154
- ISSN: 0391-173X
Access Full Article
topHow to cite
topBoffi, Daniele, Brezzi, Franco, and Gastaldi, Lucia. "On the convergence of eigenvalues for mixed formulations." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 25.1-2 (1997): 131-154. <http://eudml.org/doc/84281>.
@article{Boffi1997,
author = {Boffi, Daniele, Brezzi, Franco, Gastaldi, Lucia},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {variational problem; Hilbert spaces; bilinear forms; eigenvalue; convergence},
language = {eng},
number = {1-2},
pages = {131-154},
publisher = {Scuola normale superiore},
title = {On the convergence of eigenvalues for mixed formulations},
url = {http://eudml.org/doc/84281},
volume = {25},
year = {1997},
}
TY - JOUR
AU - Boffi, Daniele
AU - Brezzi, Franco
AU - Gastaldi, Lucia
TI - On the convergence of eigenvalues for mixed formulations
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1997
PB - Scuola normale superiore
VL - 25
IS - 1-2
SP - 131
EP - 154
LA - eng
KW - variational problem; Hilbert spaces; bilinear forms; eigenvalue; convergence
UR - http://eudml.org/doc/84281
ER -
References
top- [1] I BabuŠka, Error-Bounds for Finite Element Method, Numer. Math.16 (1971), 322-333. Zbl0214.42001MR288971
- [2] I Babuška, On the finite element method with Lagrangian multipliers, Numer. Math.20 (1973), 179-192. Zbl0258.65108MR359352
- [3] I Babuška - J.E. Osborn, "Handbook of Numerical Analysis", vol. II, ch. Eigenvalue Problems, North-Holland, 1991, pp. 641-788. Zbl0875.65087MR1115240
- [4] K.J. Bathe - C. Nitikitpaiboon - X. Wang, A mixed displacement-based finite element formulation for acoustic fluid-structure interaction, Computers &Structures56 (1995), 225-237. Zbl1002.76536MR1336298
- [5] D. Boffi - F. Brezzi - L. Gastaldi, On the problem of spurious eigenvalues in the approximation of linear elliptic problems in mixed form, submitted to Math. Comp., 1997. Zbl0938.65126MR1642801
- [6] J.M. Boland - R. Nicolaides, On the stability of bilinear-constant velocity-pressure finite elements, Numer. Math.44 (1984), 219-222. Zbl0544.76030MR753954
- [7] J.H. Bramble - J.E. Osborn, Rate of convergence for nonselfadjoint eigenvalue approximations, Math. Comp.27 (1973), 525-549. Zbl0305.65064MR366029
- [8] F. Brezzi, On the existence, uniqueness and approximation of saddle point problems arising from Lagrangian multipliers, R.A.I.R.O. Anal. Numer.8 (1974), 129-151. Zbl0338.90047MR365287
- [9] F. Brezzi - M. Fortin, "Mixed and Hybrid Finite Element Methods", Springer-Verlag, New York, 1991. Zbl0788.73002MR1115205
- [10] F. Brezzi - J. DouglasJr. - M. Fortin - L.D. Marini, Efficient rectangular mixed finite elements in two and three space variables, R.A.I.R.O. Model. Math. Anal. Numer.21 (1987), 237-250. Zbl0689.65065MR921828
- [11] F. Brezzi - J. DouglasJr. - L.D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math.47 (1985), 217-235. Zbl0599.65072MR799685
- [12] P.G. Ciarlet, "The Finite Element Method for Elliptic Problems ", North-Holland, Amsterdam, 1978. Zbl0383.65058MR520174
- [13] P.G. Ciarlet - P.-A. Raviart, A mixed finite element methodfor the biharmonic equation, in "Mathematical Aspects of Finite Element in Partial Differential Equations", C. de Boor (ed.), Academic Press, New York, 1974, 125-143. Zbl0337.65058MR657977
- [14] J. Falk - J.E. Osborn, Error estimates for mixed methods, R.A.I.R.O. Anal. Numer.4 (1980), 249-277. Zbl0467.65062MR592753
- [15] M. Fortin, An analysis of the convergence of mixed finite element methods, R.A.I.R.O. Anal. Numer.11 (1977), 341-354. Zbl0373.65055MR464543
- [16] R. Glowinski, Approximations externes par éléments finis de Lagrange d' ordre un et deux, du problème de Dirichlet pour l'opérateur biharmonique. Méthodes itératives de résolution des problèmes approchés, "Topics in Numerical Analysis", J. Miller (ed.), Academic Press, New York, 1973, 123-171. Zbl0277.35003MR351120
- [17] P. Grisvard, "Elliptic Problems in Non-Smooth Domains", Pitman, Marshfields, Mass., 1985. Zbl0695.35060
- [18] C. Johnson - J. Pitkäranta, Analysis of some mixed finite element methods related to reduced integration, Math. Comp.38 (1982), 375-400. Zbl0482.65058MR645657
- [19] R.B. Kellogg - J.E. Osborn, A regularity result for the Stokes problem, J. Funct. Anal.21 (1976), 397-431. Zbl0317.35037MR404849
- [20] B. Mercier, Numerical solution of the biharmonic problem by mixed finite elements of class C°, Boll. U.M.I.10 (1974), 133-149. Zbl0332.65058MR378442
- [21] B. Mercier - J.E. Osborn - J. Rappaz - P.-A. Raviart, Eigenvalue approximation by mixed and hybrid methods, Math. Comp.36 (1981), 427-453. Zbl0472.65080MR606505
- [22] J.T. Oden - O. Jacquotte, Stability of some mixed finite element methods for Stokesian flows, Comp. Methods Appl. Mech. Eng.43 (1984), 231-247. Zbl0598.76033MR745509
- [23] J.E. Osborn, Eigenvalue approximations by mixed methods, in "Advances in Computer Methods for Partial Differential Equations III", R. Vichnevetsky and R. Stepleman (eds.), New Brunswick, 1979, 158-161. MR603467
- [24] P.-A. Raviart - J.M. Thomas, A mixed finite element method for second order elliptic problems, in "Mathematical Aspects of the Finite Element Method", I. Galligani and E. Magenes (eds.), Lecture Notes in Math., Springer-Verlag, New York, 1977, 292-315. Zbl0362.65089MR483555
- [25] R. Scholz, A mixed method for fourth order problems using linear finite elements, R.A.I.R.O. Anal. Numer.12 (1978), 85-90. Zbl0382.65059MR483557
- [26] X. Wang - K.J. Bathe, On mixed elements for acoustic fluid-structure interaction, M3AS, 7 (1997), 329-344. Zbl0881.76053MR1443789
Citations in EuDML Documents
top- Qun Lin, Hehu Xie, A Superconvergence result for mixed finite element approximations of the eigenvalue problem
- Evgenii V. Chizhonkov, Maxim A. Olshanskii, On the domain geometry dependence of the LBB condition
- Evgenii V. Chizhonkov, Maxim A. Olshanskii, On the domain geometry dependence of the LBB condition
- Francesca Gardini, Mixed approximation of eigenvalue problems: A superconvergence result
- Qun Lin, Hehu Xie, A Superconvergence result for mixed finite element approximations of the eigenvalue problem
- Patrick Ciarlet Jr., François Lefèvre, Stéphanie Lohrengel, Serge Nicaise, Weighted regularization for composite materials in electromagnetism
- Wei Chen, Qun Lin, Approximation of an eigenvalue problem associated with the Stokes problem by the stream function-vorticity-pressure method
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.