Stability of the spectrum for transfer operators
Gerhard Keller; Carlangelo Liverani
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (1999)
- Volume: 28, Issue: 1, page 141-152
- ISSN: 0391-173X
Access Full Article
topHow to cite
topKeller, Gerhard, and Liverani, Carlangelo. "Stability of the spectrum for transfer operators." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 28.1 (1999): 141-152. <http://eudml.org/doc/84369>.
@article{Keller1999,
author = {Keller, Gerhard, Liverani, Carlangelo},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
keywords = {transfer operator; isolated eigenvalue; Lasota-Yorke inequality; stochastic stability; bounded linear operators; piecewise expanding maps},
language = {eng},
number = {1},
pages = {141-152},
publisher = {Scuola normale superiore},
title = {Stability of the spectrum for transfer operators},
url = {http://eudml.org/doc/84369},
volume = {28},
year = {1999},
}
TY - JOUR
AU - Keller, Gerhard
AU - Liverani, Carlangelo
TI - Stability of the spectrum for transfer operators
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 1999
PB - Scuola normale superiore
VL - 28
IS - 1
SP - 141
EP - 152
LA - eng
KW - transfer operator; isolated eigenvalue; Lasota-Yorke inequality; stochastic stability; bounded linear operators; piecewise expanding maps
UR - http://eudml.org/doc/84369
ER -
References
top- [1] V. Baladi - M. Holschneider, Approximation of nonessential spectrum of transfer operators, Preprint (1998). Zbl0984.47002MR1690191
- [2] V. Baladi - L.S. Young, On the spectra of randomly perturbed expanding maps, Comm. Math. Phys.156 (1993), 355-385; 166 (1994), 219-220. Zbl0809.60101MR1233850
- [3] M.L. Blank, Stochastic properties of deterministic dynamical systems, Soviet Sci. Rev. Sect. C Math. Phys. Rev.6 (1987), 243-271. Zbl0634.58019MR968674
- [4] M.L. Blank, Small perturbations of chaotic dynamical systems, Uspekhi Mat. Nauk44 (1989), 3-28. Zbl0702.58063MR1037009
- [5] M.L. Blank - G. Keller, Stochastic stability versus localization in chaotic dynamical systems, Nonlinearity10 (1997), 81-107. Zbl0907.58011MR1430741
- [6] M.L. Blank - G. Keller, Random perturbations of chaotic dynamical systems: Stability of the spectrum, Preprint (1998). Zbl0921.58051MR1644405
- [7] A. Boyarsky - P. Góra, Absolutely continuous invariant measures for piecewise expanding C2 transformations in RN, Israel J. Math.67 (1989), 272-286. Zbl0691.28004MR1029902
- [8] A. Boyarsky - P. Góra, "Laws of Chaos. Invariant Measures and Dynamical Systems in One Dimension ", Birkhäuser, Boston, 1997. Zbl0893.28013MR1461536
- [9] C. Chiu - Q. Du - T.Y. Li, Error estimates of the Markov finite approximation to the Frobenius-Perron operator, Nonlinear Anal.19 (1992), 291-308. Zbl0788.28009MR1178404
- [10] N. Dunford - J.T. Schwartz, "Linear Operators, Part I: General Theory", Wiley, 1957. Zbl0635.47001MR1009162
- [11] G. Froyland, Computer-assisted bounds for the rate of decay of correlations, Comm. Math. Phys.189 (1997), 237-257. Zbl0892.58047MR1478538
- [12] H. Hennion, Sur un théorème spectral et son application aux noyaux Lipchitziens, Proc. Amer. Math. Soc.118 (1993), 627-634. Zbl0772.60049MR1129880
- [13] F. Hofbauer - G. Keller, Ergodic properties of invariant measures for piecewise monotonic transformations, Math. Z.180 (1982), 119-140. Zbl0485.28016MR656227
- [14] F.Y. Hunt - W. Miller, On the approximation of invariant measures, J. Statist. Phys.66 (1992), 535-548. Zbl0892.58048MR1149495
- [15] C.T. Ionescu Tulcea - G. Marinescu, Thórie ergodique pour des classes d'opérations non complètement continues, Ann. of Math.52 (1950), 140-147. Zbl0040.06502MR37469
- [16] M. Iosifescu - R. Theodorescu, "Random Processes and Learning", Grundlehren Math. Wiss., Vol. 150, Springer, 1969. Zbl0194.51101MR293704
- [17] M. Keane - R. Murray - L.S. Young, Computing invariant measures for expanding circle maps, Nonlinearity11 (1998), 27-46. Zbl0903.58019MR1492949
- [18] G. Keller, Ergodicité et mesures invariantes pour les transformations dilatantes par morceaux d'une région bornée du plan, C.R.Acad. Sci. Paris, Série A289 (1979), 625-627 (Kurzfassung der Dissertation). Zbl0419.28007MR556443
- [19] G. Keller, Un théorème de la limite centrale pour une classe de transformations monotones par morceaux, C. R. Acad. Sci. Paris, Série A, 291 (1980), 155-158. Zbl0446.60013MR605005
- [20] G. Keller, On the rate of convergence to equilibrium in one-dimensional systems, Comm. Math. Phys.96 (1984), 181-193. Zbl0576.58016MR768254
- [21] G. Keller, Stochastic stability in some chaotic dynamical systems, Monatsh. Math.94 (1982), 313-333. Zbl0496.58010MR685377
- [22] G. Keller - M. Künzle, Transfer operators for coupled map lattices, Ergodic Theory Dynam. Systems12 (1992), 297-318. Zbl0737.58032MR1176625
- [23] G. Keller - T. Nowicki, Spectral theory, zeta functions and the distribution of periodic orbits for Collet-Eckmann maps, Comm. Math. Phys.149 (1992), 31-69. Zbl0763.58024MR1182410
- [24] A. Lasota - J.A. Yorke, On the existence of invariant measures for piecewise monotonic transformations, Trans. Amer. Math. Soc.186 (1973), 481-488. Zbl0298.28015MR335758
- [25] T.Y. Li, Finite approximations for the Frobenius-Perron operator: A solution to Ulam's conjecture, J. Approx. Theory17 (1976), 177-186. Zbl0357.41011MR412689
- [26] W. Miller, Stability and approximation of invariant measures for a class of nonexpanding transformations, Nonlinear Anal.23 (1994), 1013-1025. Zbl0822.28009MR1304241
- [27] M.F. Norman, "Markov Processes and Learning Models", Mathematics in Science and Engineering, Vol. 84, Academic Press, 1972. Zbl0262.92003MR423546
- [28] W. Parry - M. Pollicott, Zeta functions and the periodic orbit structure of hyperbolic dynamics, Astérisque, Vol. 187-188, 1990. Zbl0726.58003MR1085356
- [29] A. Pinkus, "n-Widths in Approximation Theory", Springer, 1985. Zbl0551.41001MR774404
- [30] M. Rychlik, Bounded variation and invariant measures, Studia Math.76 (1983), 69-80. Zbl0575.28011MR728198
- [31] H.H. Schaefer, "Banach Lattices and Positive Operators", Grundlehren Math. Wiss., Vol. 215, Springer, 1974. Zbl0296.47023MR423039
Citations in EuDML Documents
top- Christophe Cuny, Un TCL avec vitesse pour la marche aléatoire gauche sur le groupe affine de
- Carlangelo Liverani, Véronique Maume-Deschamps, Lasota-Yorke maps with holes : conditionally invariant probability measures and invariant probability measures on the survivor set
- Loïc Hervé, Théorème local pour chaînes de Markov de probabilité de transition quasi-compacte. Applications aux chaînes V-géométriquement ergodiques et aux modèles itératifs
- Loïc Hervé, Vitesse de convergence dans le théorème limite central pour des chaînes de Markov fortement ergodiques
- Loïc Hervé, Françoise Pène, The Nagaev-Guivarc’h method via the Keller-Liverani theorem
- Viviane Baladi, Daniel Smania, Linear response for smooth deformations of generic nonuniformly hyperbolic unimodal maps
- Déborah Ferré, Loïc Hervé, James Ledoux, Limit theorems for stationary Markov processes with L2-spectral gap
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.