Intégrales d'entrelacement et fonctions de Whittaker

Gérard Schiffmann

Bulletin de la Société Mathématique de France (1971)

  • Volume: 99, page 3-72
  • ISSN: 0037-9484

How to cite

top

Schiffmann, Gérard. "Intégrales d'entrelacement et fonctions de Whittaker." Bulletin de la Société Mathématique de France 99 (1971): 3-72. <http://eudml.org/doc/87178>.

@article{Schiffmann1971,
author = {Schiffmann, Gérard},
journal = {Bulletin de la Société Mathématique de France},
language = {fre},
pages = {3-72},
publisher = {Société mathématique de France},
title = {Intégrales d'entrelacement et fonctions de Whittaker},
url = {http://eudml.org/doc/87178},
volume = {99},
year = {1971},
}

TY - JOUR
AU - Schiffmann, Gérard
TI - Intégrales d'entrelacement et fonctions de Whittaker
JO - Bulletin de la Société Mathématique de France
PY - 1971
PB - Société mathématique de France
VL - 99
SP - 3
EP - 72
LA - fre
UR - http://eudml.org/doc/87178
ER -

References

top
  1. [1] BOREL (A.). — Linear algebraic groups. — New York, W. A. Benjamin, 1969. Zbl0186.33201MR40 #4273
  2. [2] BOURBAKI (N.). — Intégration. Chap. 7-8. — Paris, Hermann, 1963 (Act. scient. et ind., 1306 ; Bourbaki, 29). Zbl0156.03204
  3. [3] BOURBAKI (N.). — Groupes et algèbres de Lie, Chap. 4-6. — Paris, Hermann, 1968 (Act. scient. et ind., 1337 ; Bourbaki, 34). 
  4. [4] BRUHAT (F.). — Sur les représentations induites des groupes de Lie, Bull. Soc. math. France, t. 84, 1958, p. 241-310. Zbl0074.10303MR18,907i
  5. [5] GEL'FAND (I. M.), GRAEV (M. I.) and PJATECKIJ-ŠAPIRO (I. I.). — Representation theory and automorphic functions. — Philadelphia, London, W. B. Saunders Company, 1969 (Saunders Mathematics Books). Zbl0177.18003
  6. [6] GINDIKIN (S. G.) and KARPELEVIČ (F. I.). — Plancherel measure for Riemann symetric spaces of nonpositive curvature, Soviet Mathematics, t. 3, 1962, p. 962-965. Zbl0156.03201
  7. [7] HARISH-CHANDRA. — Spherical functions on a semi-simple Lie group, I., Amer. J. of Math., t. 80, 1958, p. 241-310. Zbl0093.12801MR20 #925
  8. [8] HELGASON (S.). — Applications of the Radon transform to representations of semi-simple Lie groups, Proc. Nat. Acad. Sc. U.S.A., t. 63, 1969, p. 643-647. Zbl0188.45203MR41 #8586
  9. [9] HOCHSCHILD (G.). — The structure of Lie groups. — San Francisco, London, Holden-Day, 1965 (Holden-Day Series Mathematics). Zbl0131.02702MR34 #7696
  10. [10] JACQUET (H.). — Fonctions de Whittaker associées aux groupes de Chevalley, Bull. Soc. math. France, t. 95, 1967, p. 243-309 (Thèse Sc. math. Paris, 1967), Zbl0155.05901
  11. [11] KNAPP (W.) and STEIN (E. M.). — Singular integrals and the principle series. Proc. Nat. Acad. Sc. U.S.A., t. 63, 1969, p. 282-284. Zbl0181.12501
  12. [12] KUNZE (R. A.) and STEIN (E. M.). — Uniformly bounded representations, III, Amer. J. of Math., t. 89, 1967, p. 385-442. Zbl0195.14202MR38 #269

Citations in EuDML Documents

top
  1. K. F. Lai, Tamagawa number of reductive algebraic groups
  2. Solomon Friedberg, Dorian Goldfeld, Mellin transforms of Whittaker functions
  3. François Bruhat, Jacques Tits, Groupes réductifs sur un corps local : I. Données radicielles valuées
  4. E. P. van den Ban, The principal series for a reductive symmetric space. I. H -fixed distribution vectors
  5. Hisayosi Matumoto, C - -Whittaker vectors corresponding to a principal nilpotent orbit of a real reductive linear Lie group, and wave front sets
  6. Hisayosi Matumoto, C - -Whittaker vectors for complex semisimple Lie groups, wave front sets, and Goldie rank polynomial representations

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.