Period mapping via Brieskorn modules

Morihiko Saito

Bulletin de la Société Mathématique de France (1991)

  • Volume: 119, Issue: 2, page 141-171
  • ISSN: 0037-9484

How to cite

top

Saito, Morihiko. "Period mapping via Brieskorn modules." Bulletin de la Société Mathématique de France 119.2 (1991): 141-171. <http://eudml.org/doc/87620>.

@article{Saito1991,
author = {Saito, Morihiko},
journal = {Bulletin de la Société Mathématique de France},
keywords = {period mapping; Brieskorn module; mixed Hodge structure},
language = {eng},
number = {2},
pages = {141-171},
publisher = {Société mathématique de France},
title = {Period mapping via Brieskorn modules},
url = {http://eudml.org/doc/87620},
volume = {119},
year = {1991},
}

TY - JOUR
AU - Saito, Morihiko
TI - Period mapping via Brieskorn modules
JO - Bulletin de la Société Mathématique de France
PY - 1991
PB - Société mathématique de France
VL - 119
IS - 2
SP - 141
EP - 171
LA - eng
KW - period mapping; Brieskorn module; mixed Hodge structure
UR - http://eudml.org/doc/87620
ER -

References

top
  1. [1] BOUTET de MONVEL (L.). — D-modules holonomes réguliers en une variable, in Mathématique et Physique. — Prog. in Math., 37, Birkhäuser, Boston, 1983, p. 281-288. 
  2. [2] BRIANÇON (J.), MAISONOBE (Ph.). — Idéaux de germes d'opérateurs différentiels à une variable, Enseign. Math., t. 39, 1984, p. 7-38. Zbl0542.14008
  3. [3] BRIESKORN (E.). — Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math., t. 2, 1970, p. 103-161. Zbl0186.26101MR42 #2509
  4. [4] CARLSON (J.) and GRIFFITHS (P.). — Infinitesimal variations of Hodge structure and the global Torelli problem, in Algebraic Geometry Angers. — Sijthoff & Noordhoff, Alphen a/d Rijn, 1980, p. 51-76. Zbl0479.14007MR82h:14006
  5. [5] DELIGNE (P.). — Théorie de Hodge I : Actes Congrès Intern. Math., 1970, p. 425-430 ; II : Publ. Math. IHES, 40, 1971, p. 5-58 ; III : ibid., 44, 1974, p. 5-77. 
  6. [6] DELIGNE (P.). — Le formalisme des cycles évanescents, in SGA7 XIII and XIV. — Lect. Notes in Math., 340, Springer, Berlin, 1973, p. 82-115 and 116-164. Zbl0266.14008MR50 #7135
  7. [7] DELIGNE (P.). — Équations différentielles à points singuliers réguliers. — Lect. Notes in Math., 163, Springer, Berlin, 1970. Zbl0244.14004MR54 #5232
  8. [8] KARPISHPAN (Y.). — Torelli theorems for singularities, Inv. Math., t. 100, 1990, p. 97-141. Zbl0694.32013MR91b:32040
  9. [9] KASHIWARA (M.). — B-function and holonomic systems, Inv. Math., t. 38, 1976, p. 33-53. Zbl0354.35082MR55 #3309
  10. [10] KASHIWARA (M.). — Vanishing cycle sheaves and holonomic systems of differential equations. — Lect. Notes in Math., 1016, Springer, Berlin, 1983, p. 136-142. Zbl0566.32022MR85e:58137
  11. [11] KASHIWARA (M.), KAWAI (T.). — On the holonomic system of microdifferential equations III, Publ. RIMS, Kyoto Univ., t. 17, 1981, p. 813-979. Zbl0505.58033MR83e:58085
  12. [12] KIEHL (R.), VERDIER (J.-L.). — Ein einfacher Beweis des Kohärenzsatzes von Grauert, Math. Ann, t. 195, 1971, p. 24-50. Zbl0223.32010MR46 #5678
  13. [13] MALGRANGE (B.). — Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. Paris (4), t. 7, 1974, p. 405-430. Zbl0305.32008MR51 #8459
  14. [14] MALGRANGE (B.). — Polynôme de Bernstein-Sato et cohomologie évanescente. — Astérisque, 101-102, 1983, p. 243-267. Zbl0528.32007MR86f:58148
  15. [15] MEBKHOUT (Z.). — Une autre équivalence de catégories, Compos. Math., t. 51, 1984, p. 63-88. Zbl0566.32021MR85k:58073
  16. [16] MILNOR (J.). — Singular points of complex hypersurfaces. — Ann. Math. Stud., 61, Princeton University Press, 1968. Zbl0184.48405MR39 #969
  17. [17] PHAM (F.). — Singularités des systèmes différentiels de Gauss-Manin. — Prog. in Math. 2, Birkhäuser, Boston, 1979. Zbl0524.32015MR81h:32015
  18. [18] PHAM (F.). — Structure de Hodge mixte associée à point critique isolé. — Astérisque, 101-102, 1983, p. 268-285. Zbl0555.32018
  19. [19] SAITO (K.). — Period mapping associated to a primitive form, Publ. RIMS, Kyoto Univ., t. 19, 1983, p. 1231-1264. Zbl0539.58003MR85h:32034
  20. [20] SAITO (M.). — Gauss-Manin systems and mixed Hodge structure, Proc. Japan Acad., t. 58, 1982, p. 29-32 ; Supplément in Astérisque, 101-102, 1983, p. 320-321. Zbl0516.32012MR83f:14006
  21. [21] SAITO (M.). — Hodge filtrations on Gauss-Manin systems I, J. Fac. Sci. Univ. Tokyo, t. 30, 1984, p. 489-498. Zbl0549.32016MR86j:32026
  22. [22] SAITO (M.). — On the structure of Brieskorn lattice, Ann. Institut Fourier, t. 39, 1989, p. 27-72. Zbl0644.32005MR91i:32035
  23. [23] SAITO (M.). — Exponents and Newton polyhedra of isolated hypersurface singularities, Math. Ann., t. 281, 1988, p. 411-417. Zbl0628.32038MR89h:32027
  24. [24] SCHERK (J.) and STEENBRINK (J.). — On the mixed Hodge structure on the cohomology of the Milnor fiber, Math. Ann., t. 271, 1985, p. 641-645. Zbl0618.14002MR87b:32014
  25. [25] SEBASTIANI (M.). — Preuve d'une conjecture de Brieskorn, Manuscripta Math., t. 2, 1970, p. 301-308. Zbl0194.11402MR42 #2510
  26. [26] STEENBRINK (J.). — Mixed Hodge structure on the vanishing cohomology, in Real and Complex Singularities (Proc. Nordic Summer school, Oslo, 1976). — Sijthoff & Noordhoff, Alphen a/d Rijn, 1977, p. 525-563. Zbl0373.14007MR58 #5670
  27. [27] VARCHENKO (A.). — The asymptotics of holomorphic forms determine a mixed Hodge structure, Soviet Math. Dokl., t. 22, 1980, p. 772-775. Zbl0516.14007MR82g:14010
  28. [28] VARCHENKO (A.). — The complex exponent of a singularity does not change along strata µ = const, Func. Anal. Appl., t. 16, 1982, p. 1-9. Zbl0498.32010MR83j:32005
  29. [29] VARCHENKO (A.). — A lower bound for the codimension of the strata µ-const in terms of mixed Hodge structure, Moscow Univ. Math. Bull., t. 37-6, 1982, p. 30-33. Zbl0517.32004MR83j:10058
  30. [30] LÊ DŨNG TRÁNG and RAMANUJAM (C.P.). — The invariance of Milnor number implies the invariance of the topological type, Am. J. Math., t. 98, 1976, p. 67-78. Zbl0351.32009MR53 #2939
  31. [31] MALGRANGE (B.). — Deformation of differential systems II, Journal of Ramanujan Math. Soc., t. 1, 1986, p. 3-15. Zbl0687.32019MR89j:58121
  32. [32] SAITO (K.). — Quasihomogene isolierte Singularitäten von Hyperflächen, Inv. Math., t. 14, 1971, p. 123-142. Zbl0224.32011MR45 #3767
  33. [33] SAITO (K.). — Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo, t. 27, 1980, p. 265-291. Zbl0496.32007MR83h:32023
  34. [34] SAITO (M.). — Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ., t. 24, 1988, p. 849-995. Zbl0691.14007MR90k:32038
  35. [35] SAITO (M.). — Mixed Hodge Modules, Publ. RIMS, Kyoto Univ., t. 26, 1990, p. 221-333. Zbl0727.14004MR91m:14014
  36. [36] SCHERK (J.). — On the monodromy theorem for isolated hypersurface singularities, Inv. Math., t. 58, 1980, p. 289-301. Zbl0432.32010MR81k:14009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.