Familles de revêtements de la droite projective

Michel Emsalem

Bulletin de la Société Mathématique de France (1995)

  • Volume: 123, Issue: 1, page 47-85
  • ISSN: 0037-9484

How to cite

top

Emsalem, Michel. "Familles de revêtements de la droite projective." Bulletin de la Société Mathématique de France 123.1 (1995): 47-85. <http://eudml.org/doc/87711>.

@article{Emsalem1995,
author = {Emsalem, Michel},
journal = {Bulletin de la Société Mathématique de France},
keywords = {coverings of the projective line; Hurwitz spaces; inverse Galois theory; theorem of Fried-Völklein},
language = {fre},
number = {1},
pages = {47-85},
publisher = {Société mathématique de France},
title = {Familles de revêtements de la droite projective},
url = {http://eudml.org/doc/87711},
volume = {123},
year = {1995},
}

TY - JOUR
AU - Emsalem, Michel
TI - Familles de revêtements de la droite projective
JO - Bulletin de la Société Mathématique de France
PY - 1995
PB - Société mathématique de France
VL - 123
IS - 1
SP - 47
EP - 85
LA - fre
KW - coverings of the projective line; Hurwitz spaces; inverse Galois theory; theorem of Fried-Völklein
UR - http://eudml.org/doc/87711
ER -

References

top
  1. [Big-Fr] BIGGERS (R.), FRIED (M.). — Moduli spaces of Covers of ℙ1 and the Hurwitz Monodromy Group, J. Reine Angew. Math., t. 335, 1982, p. 87-121. Zbl0484.14002MR84h:14034a
  2. [Bir] BIRMAN (J.S.). — Braids, links, and mapping class groups. — Annals of Math. Studies, Princeton University Press, 1975. Zbl0305.57013
  3. [Car] CARTAN (H.). — Cours de topologie algébrique. — Polycopié de la Faculté des Sciences de Paris, 1969. 
  4. [De-Fr] DÈBES (P.) et FRIED (M.). — Non rigid situations in constructive Galois theory, Pacific J. Math., t. 163, 1, 1994, p. 81-122. Zbl0788.12001MR95c:12008
  5. [Dou] DOUADY (R.) et DOUADY (A.). — Théories galoisiennes. — CEDIC, Nathan, 1979. Zbl0428.30034MR82b:12024b
  6. [Fr] FRIED (M.). — Fields of definition of function fields and Hurwitz families; Groups as Galois groups, Communications in Algebra, t. 5 (1), 1977, p. 17-82. Zbl0478.12006MR56 #12006
  7. [Fr-Völ] FRIED (M.) and VÖLKLEIN (H.). — The inverse Galois problem and rational points on moduli spaces, Math. Ann., t. 290, 1991, p. 771-800. Zbl0763.12004MR93a:12004
  8. [Ful] FULTON (W.). — Hurwitz schemes and irreducibility of moduli of algebraic curves, Annals of Math., t. 90, 1969, p. 542-575. Zbl0194.21901MR41 #5375
  9. [Gr-Re] GRAUERT (H.) und REMMERT (R.). — Komplex Räume, Math. Ann., t. 136, 1958, p. 245-318. Zbl0087.29003MR21 #2063
  10. [Gro] GROTHENDIECK (A.). — Séminaire de géométrie algébrique, SGA1. — IHES, 1960-1961. Zbl0091.12002
  11. [Hart] HARTSHORNE (R.). — Algebraic Geometry. — Springer Verlag, 1977. Zbl0367.14001MR57 #3116
  12. [Hur] HURWITZ (A.). — Riemannsche Flächen mit gegebenem Veizweigungspunkten, Mathemetische Werke, Band, t. 1, p. 321-383. 
  13. [Mat] MATZAT (H.). — Constructive Galois theorie, Lecture Notes in Math., t. 1284, 1986. Zbl0634.12011
  14. [Ray] RAYNAUD (M.). — Géométrie algébrique et géométrie analytique, SGA1, XII, Lecture Note, Springer Verlag, t. 224, 1971, p. 311-343. MR50 #7129
  15. [Ser1] SERRE (J.-P.). — Géométrie algébrique et géométrie analytique, Ann. Inst. Fourier, t. 6, 1956, p. 1-42. Zbl0075.30401MR18,511a
  16. [Ser2] SERRE (J.-P.). — Topics in Galois Theory, cours à Harward, notes written by Henri Darmon, Jones and Bartlett Publ., Boston, (1992). Zbl0746.12001MR94d:12006
  17. [Wei] WEIL (A.). — The field of definition of a variety, Amer. J. Math. 78 (1956), p. 509-524; dans Oeuvres complètes (Collected papers) II, Springer Verlag, 291-306. Zbl0072.16001MR18,601a

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.