The unramified principal series of p -adic groups. I. The spherical function

W. Casselman

Compositio Mathematica (1980)

  • Volume: 40, Issue: 3, page 387-406
  • ISSN: 0010-437X

How to cite

top

Casselman, W.. "The unramified principal series of $p$-adic groups. I. The spherical function." Compositio Mathematica 40.3 (1980): 387-406. <http://eudml.org/doc/89444>.

@article{Casselman1980,
author = {Casselman, W.},
journal = {Compositio Mathematica},
keywords = {unramified principal series; zonal spherical functions on p-adic reductive groups; intertwining operators; Jacquet modules; reductive group over global field; Macdonald's formula},
language = {eng},
number = {3},
pages = {387-406},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {The unramified principal series of $p$-adic groups. I. The spherical function},
url = {http://eudml.org/doc/89444},
volume = {40},
year = {1980},
}

TY - JOUR
AU - Casselman, W.
TI - The unramified principal series of $p$-adic groups. I. The spherical function
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 40
IS - 3
SP - 387
EP - 406
LA - eng
KW - unramified principal series; zonal spherical functions on p-adic reductive groups; intertwining operators; Jacquet modules; reductive group over global field; Macdonald's formula
UR - http://eudml.org/doc/89444
ER -

References

top
  1. [1] A. Borel: Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup. Inventiones Math.35 (1976) 233-259. Zbl0334.22012MR444849
  2. [2] A. Borel and J. Tits: Groupes réductifs, Publ. Math. I.H.E.S.27 (1965) 55-151. Zbl0145.17402MR207712
  3. [3] A. Borel and J. Tits: Compléments à l'article "Groupes.réductifs", Publ. Math. I.H.E.S.41 (1972) 253-276. Zbl0254.14018MR315007
  4. [4] A. Borel and J. Tits: Homomorphismes "abstraits" de groupes algebriques simples. Annals of Math.97 (1973) 499-571. Zbl0272.14013MR316587
  5. [5] N. Bourbaki: Groupes et algèbres de Lie. Chapitres IV, V, et VI. Hermann, Paris, 1968. MR240238
  6. [6] F. Bruhat and J. Tits: Groupes réductifs sur un corps local, Publ. Math. I.H.E.S.41 (1972) 1-251. Zbl0254.14017MR327923
  7. [7] W. Casselman: Introduction to the theory of admissible representations of p-adic reductive groups (to appear). 
  8. [8] N. Iwahori: Generalized Tits systems on p-adic semi-simple groups, in Algebraic Groups and Discontinuous Subgroups. Proc. Symp. Pure Math. IX. A.M.S., Providence, 1966. Zbl0199.06901MR215858
  9. [9] I.G. Macdonald: Spherical functions on a p-adic Chevalley group. Bull. Amer. Math. Soc.74 (1968) 520-525. Zbl0273.22012MR222089
  10. [10] I.G. Macdonald: Spherical functions on a group of p-adic type. University of Madras, 1971. Zbl0302.43018MR435301
  11. [11] R. Steinberg: Lectures on Chevalley groups. Yale University Lecture Notes, 1967. MR466335
  12. [12] H. Matsumoto: Analyse Harmonique dans les Système de Tits Bomologiques de Type Affine. Springer Lecture Notes#590, Berlin, 1977. Zbl0366.22001MR579177
  13. [13] J. Tits: Reductive groups over local fields. Proc. Symp. Pure Math. XXXIII, Amer. Math. Soc., Providence, 1978. Zbl0415.20035MR546588

Citations in EuDML Documents

top
  1. David Keys, Principal series representations of special unitary groups over local fields
  2. W. Casselman, J. Shalika, The unramified principal series of p -adic groups. II. The Whittaker function
  3. S. J. Patterson, Metaplectic forms and Gauss sums I
  4. Marko Tadic, Spherical unitary dual of general linear group over non-Archimidean local field
  5. François Rodier, Sur les représentations non ramifiées des groupes réductifs p -adiques ; l’exemple de G S p ( 4 )
  6. Jean-Pierre Labesse, Noninvariant base change identities
  7. Jing-Song Huang, Metaplectic correspondences and unitary representations
  8. Mark Reeder, p -adic Whittaker functions and vector bundles on flag manifolds
  9. Chris Jantzen, On the Iwahori-Matsumoto involution and applications
  10. Pierre-Henri Chaudouard, Sur le changement de base stable des intégrales orbitales pondérées

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.