The unramified principal series of -adic groups. I. The spherical function
Compositio Mathematica (1980)
- Volume: 40, Issue: 3, page 387-406
 - ISSN: 0010-437X
 
Access Full Article
topHow to cite
topCasselman, W.. "The unramified principal series of $p$-adic groups. I. The spherical function." Compositio Mathematica 40.3 (1980): 387-406. <http://eudml.org/doc/89444>.
@article{Casselman1980,
	author = {Casselman, W.},
	journal = {Compositio Mathematica},
	keywords = {unramified principal series; zonal spherical functions on p-adic reductive groups; intertwining operators; Jacquet modules; reductive group over global field; Macdonald's formula},
	language = {eng},
	number = {3},
	pages = {387-406},
	publisher = {Sijthoff et Noordhoff International Publishers},
	title = {The unramified principal series of $p$-adic groups. I. The spherical function},
	url = {http://eudml.org/doc/89444},
	volume = {40},
	year = {1980},
}
TY  - JOUR
AU  - Casselman, W.
TI  - The unramified principal series of $p$-adic groups. I. The spherical function
JO  - Compositio Mathematica
PY  - 1980
PB  - Sijthoff et Noordhoff International Publishers
VL  - 40
IS  - 3
SP  - 387
EP  - 406
LA  - eng
KW  - unramified principal series; zonal spherical functions on p-adic reductive groups; intertwining operators; Jacquet modules; reductive group over global field; Macdonald's formula
UR  - http://eudml.org/doc/89444
ER  - 
References
top- [1] A. Borel: Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup. Inventiones Math.35 (1976) 233-259. Zbl0334.22012MR444849
 - [2] A. Borel and J. Tits: Groupes réductifs, Publ. Math. I.H.E.S.27 (1965) 55-151. Zbl0145.17402MR207712
 - [3] A. Borel and J. Tits: Compléments à l'article "Groupes.réductifs", Publ. Math. I.H.E.S.41 (1972) 253-276. Zbl0254.14018MR315007
 - [4] A. Borel and J. Tits: Homomorphismes "abstraits" de groupes algebriques simples. Annals of Math.97 (1973) 499-571. Zbl0272.14013MR316587
 - [5] N. Bourbaki: Groupes et algèbres de Lie. Chapitres IV, V, et VI. Hermann, Paris, 1968. MR240238
 - [6] F. Bruhat and J. Tits: Groupes réductifs sur un corps local, Publ. Math. I.H.E.S.41 (1972) 1-251. Zbl0254.14017MR327923
 - [7] W. Casselman: Introduction to the theory of admissible representations of p-adic reductive groups (to appear).
 - [8] N. Iwahori: Generalized Tits systems on p-adic semi-simple groups, in Algebraic Groups and Discontinuous Subgroups. Proc. Symp. Pure Math. IX. A.M.S., Providence, 1966. Zbl0199.06901MR215858
 - [9] I.G. Macdonald: Spherical functions on a p-adic Chevalley group. Bull. Amer. Math. Soc.74 (1968) 520-525. Zbl0273.22012MR222089
 - [10] I.G. Macdonald: Spherical functions on a group of p-adic type. University of Madras, 1971. Zbl0302.43018MR435301
 - [11] R. Steinberg: Lectures on Chevalley groups. Yale University Lecture Notes, 1967. MR466335
 - [12] H. Matsumoto: Analyse Harmonique dans les Système de Tits Bomologiques de Type Affine. Springer Lecture Notes#590, Berlin, 1977. Zbl0366.22001MR579177
 - [13] J. Tits: Reductive groups over local fields. Proc. Symp. Pure Math. XXXIII, Amer. Math. Soc., Providence, 1978. Zbl0415.20035MR546588
 
Citations in EuDML Documents
top- David Keys, Principal series representations of special unitary groups over local fields
 - W. Casselman, J. Shalika, The unramified principal series of -adic groups. II. The Whittaker function
 - S. J. Patterson, Metaplectic forms and Gauss sums I
 - Marko Tadic, Spherical unitary dual of general linear group over non-Archimidean local field
 - François Rodier, Sur les représentations non ramifiées des groupes réductifs -adiques ; l’exemple de
 - Jean-Pierre Labesse, Noninvariant base change identities
 - Jing-Song Huang, Metaplectic correspondences and unitary representations
 - Mark Reeder, -adic Whittaker functions and vector bundles on flag manifolds
 - Chris Jantzen, On the Iwahori-Matsumoto involution and applications
 - Pierre-Henri Chaudouard, Sur le changement de base stable des intégrales orbitales pondérées
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.