The unramified principal series of -adic groups. I. The spherical function
Compositio Mathematica (1980)
- Volume: 40, Issue: 3, page 387-406
- ISSN: 0010-437X
Access Full Article
topHow to cite
topCasselman, W.. "The unramified principal series of $p$-adic groups. I. The spherical function." Compositio Mathematica 40.3 (1980): 387-406. <http://eudml.org/doc/89444>.
@article{Casselman1980,
author = {Casselman, W.},
journal = {Compositio Mathematica},
keywords = {unramified principal series; zonal spherical functions on p-adic reductive groups; intertwining operators; Jacquet modules; reductive group over global field; Macdonald's formula},
language = {eng},
number = {3},
pages = {387-406},
publisher = {Sijthoff et Noordhoff International Publishers},
title = {The unramified principal series of $p$-adic groups. I. The spherical function},
url = {http://eudml.org/doc/89444},
volume = {40},
year = {1980},
}
TY - JOUR
AU - Casselman, W.
TI - The unramified principal series of $p$-adic groups. I. The spherical function
JO - Compositio Mathematica
PY - 1980
PB - Sijthoff et Noordhoff International Publishers
VL - 40
IS - 3
SP - 387
EP - 406
LA - eng
KW - unramified principal series; zonal spherical functions on p-adic reductive groups; intertwining operators; Jacquet modules; reductive group over global field; Macdonald's formula
UR - http://eudml.org/doc/89444
ER -
References
top- [1] A. Borel: Admissible representations of a semi-simple group over a local field with vectors fixed under an Iwahori subgroup. Inventiones Math.35 (1976) 233-259. Zbl0334.22012MR444849
- [2] A. Borel and J. Tits: Groupes réductifs, Publ. Math. I.H.E.S.27 (1965) 55-151. Zbl0145.17402MR207712
- [3] A. Borel and J. Tits: Compléments à l'article "Groupes.réductifs", Publ. Math. I.H.E.S.41 (1972) 253-276. Zbl0254.14018MR315007
- [4] A. Borel and J. Tits: Homomorphismes "abstraits" de groupes algebriques simples. Annals of Math.97 (1973) 499-571. Zbl0272.14013MR316587
- [5] N. Bourbaki: Groupes et algèbres de Lie. Chapitres IV, V, et VI. Hermann, Paris, 1968. MR240238
- [6] F. Bruhat and J. Tits: Groupes réductifs sur un corps local, Publ. Math. I.H.E.S.41 (1972) 1-251. Zbl0254.14017MR327923
- [7] W. Casselman: Introduction to the theory of admissible representations of p-adic reductive groups (to appear).
- [8] N. Iwahori: Generalized Tits systems on p-adic semi-simple groups, in Algebraic Groups and Discontinuous Subgroups. Proc. Symp. Pure Math. IX. A.M.S., Providence, 1966. Zbl0199.06901MR215858
- [9] I.G. Macdonald: Spherical functions on a p-adic Chevalley group. Bull. Amer. Math. Soc.74 (1968) 520-525. Zbl0273.22012MR222089
- [10] I.G. Macdonald: Spherical functions on a group of p-adic type. University of Madras, 1971. Zbl0302.43018MR435301
- [11] R. Steinberg: Lectures on Chevalley groups. Yale University Lecture Notes, 1967. MR466335
- [12] H. Matsumoto: Analyse Harmonique dans les Système de Tits Bomologiques de Type Affine. Springer Lecture Notes#590, Berlin, 1977. Zbl0366.22001MR579177
- [13] J. Tits: Reductive groups over local fields. Proc. Symp. Pure Math. XXXIII, Amer. Math. Soc., Providence, 1978. Zbl0415.20035MR546588
Citations in EuDML Documents
top- David Keys, Principal series representations of special unitary groups over local fields
- W. Casselman, J. Shalika, The unramified principal series of -adic groups. II. The Whittaker function
- S. J. Patterson, Metaplectic forms and Gauss sums I
- Marko Tadic, Spherical unitary dual of general linear group over non-Archimidean local field
- François Rodier, Sur les représentations non ramifiées des groupes réductifs -adiques ; l’exemple de
- Jean-Pierre Labesse, Noninvariant base change identities
- Jing-Song Huang, Metaplectic correspondences and unitary representations
- Mark Reeder, -adic Whittaker functions and vector bundles on flag manifolds
- Chris Jantzen, On the Iwahori-Matsumoto involution and applications
- Pierre-Henri Chaudouard, Sur le changement de base stable des intégrales orbitales pondérées
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.