Root systems and hypergeometric functions III

E. M. Opdam

Compositio Mathematica (1988)

  • Volume: 67, Issue: 1, page 21-49
  • ISSN: 0010-437X

How to cite

top

Opdam, E. M.. "Root systems and hypergeometric functions III." Compositio Mathematica 67.1 (1988): 21-49. <http://eudml.org/doc/89908>.

@article{Opdam1988,
author = {Opdam, E. M.},
journal = {Compositio Mathematica},
keywords = {multivariable hypergeometric functions; Harish-Chandra homomorphism; root system of type },
language = {eng},
number = {1},
pages = {21-49},
publisher = {Kluwer Academic Publishers},
title = {Root systems and hypergeometric functions III},
url = {http://eudml.org/doc/89908},
volume = {67},
year = {1988},
}

TY - JOUR
AU - Opdam, E. M.
TI - Root systems and hypergeometric functions III
JO - Compositio Mathematica
PY - 1988
PB - Kluwer Academic Publishers
VL - 67
IS - 1
SP - 21
EP - 49
LA - eng
KW - multivariable hypergeometric functions; Harish-Chandra homomorphism; root system of type
UR - http://eudml.org/doc/89908
ER -

References

top
  1. [B] R. Beerends: On the Abel transform and its inversion, thesis (1987). Zbl0597.43006
  2. [H] G.J. Heckman: Root systems and hypergeometric functions II. Comp. Math.64 (1987) 353-373. Zbl0656.17007MR918417
  3. [HC] Harish Chandra: Differential operators on a semisimple Lie algebra. A.J.M.79 (1957) 87-120. Zbl0072.01901MR84104
  4. [HO] G.J. Heckman and E.M. Opdam: Root systems and hypergeometric functions I. Comp. Math.64 (1987) 329-352. Zbl0656.17006MR918416
  5. [K] T.H. Koornwinder: Orthogonal polynomials in two variables which are eigenfunctions of two algebraically independent differential operators, I-IV. Indag. Math36 (1974) 48-66 and 358-381. MR340673
  6. [L] H. v.d.Lek: The homotopy type of complex hyperplane complements. Thesis, Nijmegen (1983). 
  7. [S] I.G. Sprinkhuizen-Kuyper: Orthogonal polynomials in two variables. A further analysis of the polynomials orthogonal over a region bounded by two lines and a parabola. SIAM7 (1976). Zbl0332.33011MR415187
  8. [Se] J. Sekiguchi: Zonal spherical functions on some symmetric spaces. Publ. RMS Kyoto Univ, 12 Suppl. 455-459 (1977). Zbl0383.43005MR461040
  9. [V] L. Vretare: Formulas for elementary spherical functions and generalized Jacobi polynomials. SIAM15 (1984). Zbl0549.43006MR747438

Citations in EuDML Documents

top
  1. G. J. Heckman, Root systems and hypergeometric functions. II
  2. E. M. Opdam, Root systems and hypergeometric functions IV
  3. Pavel Etingof, Konstantin Styrkas, Algebraic integrability of Schrodinger operators and representations of Lie algebras
  4. R. J. Beerends, The Abel transform and shift operators
  5. J. F. Van Diejen, Commuting difference operators with polynomial eigenfunctions
  6. I. G. MacDonald, Affine Hecke algebras and orthogonal polynomials
  7. E. M. Opdam, Dunkl operators, Bessel functions and the discriminant of a finite Coxeter group
  8. G. J. Heckman, Dunkl operators

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.