The subspace theorem in diophantine approximations
Compositio Mathematica (1989)
- Volume: 69, Issue: 2, page 121-173
- ISSN: 0010-437X
Access Full Article
topHow to cite
topSchmidt, Wolfgang M.. "The subspace theorem in diophantine approximations." Compositio Mathematica 69.2 (1989): 121-173. <http://eudml.org/doc/89945>.
@article{Schmidt1989,
author = {Schmidt, Wolfgang M.},
journal = {Compositio Mathematica},
keywords = {rational approximations of algebraic numbers; linear forms; Subspace theorem; quantitative version; upper bound for the number of hyperplanes},
language = {eng},
number = {2},
pages = {121-173},
publisher = {Kluwer Academic Publishers},
title = {The subspace theorem in diophantine approximations},
url = {http://eudml.org/doc/89945},
volume = {69},
year = {1989},
}
TY - JOUR
AU - Schmidt, Wolfgang M.
TI - The subspace theorem in diophantine approximations
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 69
IS - 2
SP - 121
EP - 173
LA - eng
KW - rational approximations of algebraic numbers; linear forms; Subspace theorem; quantitative version; upper bound for the number of hyperplanes
UR - http://eudml.org/doc/89945
ER -
References
top- 1 E. Bombieri and J. Vaaler, On Siegel's lemma. Invent. Math.73 (1983) 11-32. Zbl0533.10030MR707346
- 2 E. Bombieri and A.J. Van der Poorten, Some quantitative results related to Roth's Theorem. MacQuarie Math. Reports, Report No. 87-0005, February 1987.
- 3 J.W.S. Cassels, An Introduction to the Geometry of Numbers. Springer Grundlehren99 (1959). Zbl0086.26203
- 4 H. Davenport, Note on a result of Siegel. Acta Arith.2 (1937) 262-265. Zbl63.0922.01JFM63.0922.01
- 5 H. Davenport and K.F. Roth, Rational approximation to algebraic numbers. Mathematika2 (1955) 160-167. Zbl0066.29302MR77577
- 6 H. Esnault and E. Viehweg, Dyson's Lemma for polynomials in several variables (and the theorem of Roth). Invent. Math.78 (1984) 445-490. Zbl0545.10021MR768988
- 7 J.H. Evertse, Upper bounds for the number of solutions of Diophantine equations. Math. Centrum, Amsterdam (1983) 1-127. Zbl0517.10016MR726562
- 8 K. Mahler, Ein Übertragungsprinzip für konvexe Körper. Časopis Pest. Mat. Fys. (1939) 93-102. Zbl0021.10403MR1242JFM65.0175.02
- 9 K. Mahler, On compound convex bodies I. Proc. Lon. Math. Soc. (3) 5, 358-379. Zbl0065.28002MR74460
- 10 W.M. Schmidt, On heights of algebraic subspaces and diophantine approximations. Annals of Math.83 (1967) 430-472. Zbl0152.03602MR213301
- 11 W.M. Schmidt, Norm form equations. Annals of Math.96 (1972) 526-551. Zbl0226.10024MR314761
- 12 W.M. Schmidt, The number of solutions of norm form equations. Transactions A.M.S. (to appear). Zbl0693.10014MR961596
- 13 W.M. Schmidt, Diophantine approximation. Springer Lecture Notes in Math.785, Berlin, Heidelberg, New York (1980). Zbl0421.10019MR568710
Citations in EuDML Documents
top- Yann Bugeaud, Extensions of the Cugiani-Mahler theorem
- Hans Peter Schlickewei, The quantitative subspace theorem for number fields
- Jan-Hendrik Evertse, An improvement of the quantitative subspace theorem
- K. Győry, Some applications of decomposable form equations to resultant equations
- Jan-Hendrik Evertse, An explicit version of Faltings' Product Theorem and an improvement of Roth's lemma
- K. Győry, A. Sárközy, C. L. Stewart, On the number of prime factors of integers of the form ab + 1
- Yann Bugeaud, Quantitative versions of the Subspace Theorem and applications
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.