The subspace theorem in diophantine approximations

Wolfgang M. Schmidt

Compositio Mathematica (1989)

  • Volume: 69, Issue: 2, page 121-173
  • ISSN: 0010-437X

How to cite

top

Schmidt, Wolfgang M.. "The subspace theorem in diophantine approximations." Compositio Mathematica 69.2 (1989): 121-173. <http://eudml.org/doc/89945>.

@article{Schmidt1989,
author = {Schmidt, Wolfgang M.},
journal = {Compositio Mathematica},
keywords = {rational approximations of algebraic numbers; linear forms; Subspace theorem; quantitative version; upper bound for the number of hyperplanes},
language = {eng},
number = {2},
pages = {121-173},
publisher = {Kluwer Academic Publishers},
title = {The subspace theorem in diophantine approximations},
url = {http://eudml.org/doc/89945},
volume = {69},
year = {1989},
}

TY - JOUR
AU - Schmidt, Wolfgang M.
TI - The subspace theorem in diophantine approximations
JO - Compositio Mathematica
PY - 1989
PB - Kluwer Academic Publishers
VL - 69
IS - 2
SP - 121
EP - 173
LA - eng
KW - rational approximations of algebraic numbers; linear forms; Subspace theorem; quantitative version; upper bound for the number of hyperplanes
UR - http://eudml.org/doc/89945
ER -

References

top
  1. 1 E. Bombieri and J. Vaaler, On Siegel's lemma. Invent. Math.73 (1983) 11-32. Zbl0533.10030MR707346
  2. 2 E. Bombieri and A.J. Van der Poorten, Some quantitative results related to Roth's Theorem. MacQuarie Math. Reports, Report No. 87-0005, February 1987. 
  3. 3 J.W.S. Cassels, An Introduction to the Geometry of Numbers. Springer Grundlehren99 (1959). Zbl0086.26203
  4. 4 H. Davenport, Note on a result of Siegel. Acta Arith.2 (1937) 262-265. Zbl63.0922.01JFM63.0922.01
  5. 5 H. Davenport and K.F. Roth, Rational approximation to algebraic numbers. Mathematika2 (1955) 160-167. Zbl0066.29302MR77577
  6. 6 H. Esnault and E. Viehweg, Dyson's Lemma for polynomials in several variables (and the theorem of Roth). Invent. Math.78 (1984) 445-490. Zbl0545.10021MR768988
  7. 7 J.H. Evertse, Upper bounds for the number of solutions of Diophantine equations. Math. Centrum, Amsterdam (1983) 1-127. Zbl0517.10016MR726562
  8. 8 K. Mahler, Ein Übertragungsprinzip für konvexe Körper. Časopis Pest. Mat. Fys. (1939) 93-102. Zbl0021.10403MR1242JFM65.0175.02
  9. 9 K. Mahler, On compound convex bodies I. Proc. Lon. Math. Soc. (3) 5, 358-379. Zbl0065.28002MR74460
  10. 10 W.M. Schmidt, On heights of algebraic subspaces and diophantine approximations. Annals of Math.83 (1967) 430-472. Zbl0152.03602MR213301
  11. 11 W.M. Schmidt, Norm form equations. Annals of Math.96 (1972) 526-551. Zbl0226.10024MR314761
  12. 12 W.M. Schmidt, The number of solutions of norm form equations. Transactions A.M.S. (to appear). Zbl0693.10014MR961596
  13. 13 W.M. Schmidt, Diophantine approximation. Springer Lecture Notes in Math.785, Berlin, Heidelberg, New York (1980). Zbl0421.10019MR568710

Citations in EuDML Documents

top
  1. Yann Bugeaud, Extensions of the Cugiani-Mahler theorem
  2. Hans Peter Schlickewei, The quantitative subspace theorem for number fields
  3. Jan-Hendrik Evertse, An improvement of the quantitative subspace theorem
  4. K. Győry, Some applications of decomposable form equations to resultant equations
  5. Jan-Hendrik Evertse, An explicit version of Faltings' Product Theorem and an improvement of Roth's lemma
  6. K. Győry, A. Sárközy, C. L. Stewart, On the number of prime factors of integers of the form ab + 1
  7. Yann Bugeaud, Quantitative versions of the Subspace Theorem and applications

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.