Some remarks on conjectures about cyclotomic fields and -groups of
Compositio Mathematica (1992)
- Volume: 81, Issue: 2, page 223-236
- ISSN: 0010-437X
Access Full Article
topHow to cite
topKurihara, Masato. "Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf {Z}$." Compositio Mathematica 81.2 (1992): 223-236. <http://eudml.org/doc/90137>.
@article{Kurihara1992,
author = {Kurihara, Masato},
journal = {Compositio Mathematica},
keywords = {Kummer-Vandiver conjecture; Quillen -theory; Euler systems},
language = {eng},
number = {2},
pages = {223-236},
publisher = {Kluwer Academic Publishers},
title = {Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf \{Z\}$},
url = {http://eudml.org/doc/90137},
volume = {81},
year = {1992},
}
TY - JOUR
AU - Kurihara, Masato
TI - Some remarks on conjectures about cyclotomic fields and $K$-groups of $\mathbf {Z}$
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 81
IS - 2
SP - 223
EP - 236
LA - eng
KW - Kummer-Vandiver conjecture; Quillen -theory; Euler systems
UR - http://eudml.org/doc/90137
ER -
References
top- [1] Beilinson, A.A.: Polylogarithm and cyclotomic elements, preprint (1990).
- [2] Bloch, S. and Kato, K.: L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift Vol I, Progress in Math. Vol. 86, Birkhäuser (1990), 333-400. Zbl0768.14001MR1086888
- [3] Coleman, R.F.: Anderson-Ihara theory: Gauss sums and circular units, in Algebraic Number Theory (in honor of K. Iwasawa), Adv. Studies in Pure Math.17 (1989), 55-72. Zbl0733.14012MR1097609
- [4] Deligne, P.: Le groupe fondamental de la droite projective moins trois points, in Galois groups over Q, Publ. MSRI, no. 16, Springer-Verlag (1989), 79-298. Zbl0742.14022MR1012168
- [5] Dwyer, W.G. and Friedlander, E.M.: Algebraic and etale K-theory, Trans, AMS292(1) (1985), 247-280. Zbl0581.14012MR805962
- [6] Greenberg, R.: On the Jacobian variety of some algebraic curves, Comp. Math.42 (1981), 345-359. Zbl0475.14026MR607375
- [7] Ihara, Y.: Profinite braid groups, Galois representations and complex multiplications, Ann. Math.123 (1986), 43-106. Zbl0595.12003MR825839
- [8] Ihara, Y., Kaneko, M., and Yukinari, A.: On some properties of the universal power series for Jacobi sums, Adv. Studies in Pure Math.12 (1987), 65-86. Zbl0642.12012MR948237
- [9] Iwasawa, K.: A class number formula for cyclotomic fields, Ann. Math.76 (1962), 171-179. Zbl0125.02003MR154862
- [10] Kolyvagin, V.A.: Euler systems, to appear in The Grothendieck Festschrift Vol. II. Zbl0742.14017MR1106906
- [11] Lee, R. and Szczarba, R.H.: On the torsion in K4(Z) and K5(Z) with Addendum by C. Soulé, Duke Math.45 (1978), 101-132. Zbl0385.18009
- [12] Lichtenbaum, S.:Values of zeta functions, étale cohomology, and algebraic K-theory, in Lect. Notes in Math.342, Springer-Verlag (1973), 489-501. Zbl0284.12005MR406981
- [13] Quillen, D.: Letter from Quillen to Milnor on Im(π iO→πsi→KiZ), July 26, 1972, in Lecture Notes in Math.551, Springer-Verlag (1976), 182-188. Zbl0351.55003
- [14] Rubin, K.: The main conjecture: Appendix to Cyclotomic Fields (Combined Second Edition) by S. Lang, Graduate Texts in Math. Vol. 121, Springer-Verlag (1990). Zbl0704.11038MR1029028
- [15] Soulé, C.: K-théorie des anneaux d'entiers de corps de nombres et cohomologie étale, Invent. Math.55 (1979), 251-295. Zbl0437.12008MR553999
- [16] Soulé, C.: On higher p-adic regulators, in Lecture Notes in Math.854, Springer-Verlag (1981), 372-401. Zbl0488.12008MR618313
- [17] Soulé, C.: Éléments cyclotomiques en K-thérie, Astérisque147-148 (1987), 225-257. Zbl0632.12014MR891430
- [18] Suslin, A.A.: Stability in Algebraic K-theory, in Lect. Notes in Math.966, Springer-Verlag (1982), 304-333. Zbl0498.18008MR689381
- [19] Tate, J.: Relations between K2 and Galois cohomology, Invent. Math.36 (1976), 257-274. Zbl0359.12011MR429837
- [20] Vandiver, H.S.: A property of cyclotomic integers and its relation to Fermat's last theorem, Ann. Math.26 (1924-25), 217-232. Zbl51.0136.01JFM51.0136.01
- [21] Washington, L.C.: Introduction to Cyclotomic Fields, Graduate Texts in Math. Vol. 83, Springer-Verlag (1980). Zbl0484.12001MR1421575
- [22] Wiles, A.: The Iwasawa conjecture for totally real fields, Ann. Math.131 (1990), 493-540. Zbl0719.11071MR1053488
Citations in EuDML Documents
top- Georgios Pappas, Cubic structures and ideal class groups
- Grzegorz Banaszak, Generalization of the Moore exact sequence and the wild kernel for higher K-groups
- Thong Nguyen Quang Do, Analogues supérieurs du noyau sauvage
- Pavlos Tzermias, Arithmetic of cyclic quotients of the Fermat quintic
- David Grant, Delphy Shaulis, The cuspidal torsion packet on hyperelliptic Fermat quotients
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.