Kähler manifolds with numerically effective Ricci class
Jean-Pierre Demailly; Thomas Peternell; Michael Schneider
Compositio Mathematica (1993)
- Volume: 89, Issue: 2, page 217-240
- ISSN: 0010-437X
Access Full Article
topHow to cite
topDemailly, Jean-Pierre, Peternell, Thomas, and Schneider, Michael. "Kähler manifolds with numerically effective Ricci class." Compositio Mathematica 89.2 (1993): 217-240. <http://eudml.org/doc/90258>.
@article{Demailly1993,
author = {Demailly, Jean-Pierre, Peternell, Thomas, Schneider, Michael},
journal = {Compositio Mathematica},
keywords = {numerically effective Ricci class; compact Kähler manifold; Albanese map; nef anticanonical bundles},
language = {eng},
number = {2},
pages = {217-240},
publisher = {Kluwer Academic Publishers},
title = {Kähler manifolds with numerically effective Ricci class},
url = {http://eudml.org/doc/90258},
volume = {89},
year = {1993},
}
TY - JOUR
AU - Demailly, Jean-Pierre
AU - Peternell, Thomas
AU - Schneider, Michael
TI - Kähler manifolds with numerically effective Ricci class
JO - Compositio Mathematica
PY - 1993
PB - Kluwer Academic Publishers
VL - 89
IS - 2
SP - 217
EP - 240
LA - eng
KW - numerically effective Ricci class; compact Kähler manifold; Albanese map; nef anticanonical bundles
UR - http://eudml.org/doc/90258
ER -
References
top- [Au76] Aubin, T.: Equations du type Monge-Ampère sur les variétés kählériennes compactes, C.R. Acad. Sci Paris Ser. A283 (1976) 119-121; Bull. Sci. Math.102 (1978) 63-95. Zbl0374.53022MR494932
- [Be83] Beauville, A.: Variétés Kählériennes dont la première classe de Chern est nulle, J. Diff. Geom.18 (1983) 755-782. Zbl0537.53056MR730926
- [Bi63] Bishop, R.: A relation between volume, mean curvature and diameter, Amer. Math. Soc. Not.10 (1963) 364.
- [Bo74a] Bogomolov, F.A.: On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR Sbornik22 (1974) 580-583. Zbl0304.32016MR338459
- [Bo74b] Bogomolov, F.A.: Kähler manifolds with trivial canonical class, Izvestija Akad. Nauk38 (1974) 11-21 and Math. USSR Izvestija8 (1974) 9-20. Zbl0299.32022MR338459
- [Ca57] Calabi, E.: On Kähler manifolds with vanishing canonical class, Alg. geometry and topology, Symposium in honor of S. Lefschetz, Princeton Univ. Press, Princeton (1957) 78-89. Zbl0080.15002MR85583
- [CP91] Campana, F., Peternell, Th.: On the second exterior power of tangent bundles of 3-folds, Comp. Math83 (1992), 329-346. Zbl0824.14037MR1175944
- [DPS91] Demailly, J.P., Peternell, Th., Schneider, M.: Compact complex manifolds with numerically effective tangent bundles, Preprint 1991. To appear in J. Alg. Geom. Zbl0827.14027
- [Ga80] Gage, M.E.: Upper bounds for the first eigenvalue of the Laplace-Beltrami operator, Indiana Univ. J.29 (1980) 897-912. Zbl0465.53031MR589652
- [Gr81] Gromov, M.: Groups of polynomial growth and expanding maps, Appendix by J. Tits, Publ. I.H.E.S. 53 (1981) 53-78. Zbl0474.20018MR623534
- [Ha77] Hartshorne, R.: Algebraic Geometry, Graduate Texts in Math., Springer, Berlin, 1977. Zbl0367.14001MR463157
- [HK78] Heintze, E., Karcher, H.: A general comparison theorem with applications to volume estimates for submanifolds, Ann. Scient. Ec. Norm. Sup.4e Série, 11 (1978) 451-470. Zbl0416.53027MR533065
- [Ka82] Kawamata, Y.: A generalization of Kodaira-Ramanujam's vanishing theorem, Math. Ann.261 (1982) 43-46. Zbl0476.14007MR675204
- [KMM87] Kawamata, Y., Matsuki, K., Matsuda, K.: Introduction to the minimal model pro-gram, Adv. Studies Pure Math.10 (1987) 283-360. Zbl0672.14006
- [Ko61] Kobayashi, S.: On compact Kähler manifolds with positive definite Ricci tensor, Ann. Math74 (1961) 570-574. Zbl0107.16002MR133086
- [Kr86] Kollár, J.: Higher direct images of dualizing sheaves, Ann. Math.123 (1986) 11-42. Zbl0598.14015MR825838
- [Li67] Lichnerowicz, A.: Variétés Kählériennes et première classe de Chern, J. Diff. Geom.1 (1967) 195-224. Zbl0167.20004MR226561
- [Li71] Lichnerowicz, A.: Variétés Kählériennes à première classe de Chern non négative et variétés riemanniennes à courbure de Ricci généralisée non négative, J. Diff. Geom.6 (1971) 47-94. Zbl0231.53063MR300228
- [Li72] Lichnerowicz, A.: Variétés Kählériennes à première classe de Chern non négative et situation analogue dans le cas riemannien, Ist. Naz. Alta Mat., Rome, Symposia Math., vol. 10, Academic Press, New-York (1972) 3-18. Zbl0267.53035MR394522
- [Ma69] Matsushima, Y.: Recent results on holomorphic vector fields, J. Diff. Geom.3 (1969) 477-480. Zbl0201.25902
- [Mi81] Miyanishi, M.: Algebraic methods in the theory of algebraic threefolds, Adv. Studies in Pure Math.1 (1983) 69-99. Zbl0537.14027MR715647
- [Mo82] Mori, S.: Threefolds whose canonical bundles are not numerically effective, Ann. Math.116 (1982) 133-176. Zbl0557.14021MR662120
- [My41] Myers, S.B.: Riemannian manifolds with positive mean curvature, Duke Math. J.8 (1941) 401-404. Zbl0025.22704MR4518JFM67.0673.01
- [Vi82] Viehweg, E.: Vanishing theorems, J. Reine Angew. Math.335 (1982) 1-8. Zbl0485.32019MR667459
- [Y77] Yau, S.T.: Calabi's conjecture and some new results in algebraic geometry, Proc. Nat. Acad. Sci. USA74 (1977) 1789-1790. Zbl0355.32028MR451180
- [Y78] Yau, S.T.: On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I, Comm. Pure and Appl. Math.31 (1978) 339-411. Zbl0369.53059MR480350
Citations in EuDML Documents
top- Jean-Pierre Demailly, Thomas Peternell, Michael Schneider, Compact Kähler manifolds with hermitian semipositive anticanonical bundle
- Frédéric Campana, Henri Guenancia, Mihai Păun, Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields
- Frédéric Campana, Orbifolds, special varieties and classification theory
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.