Abelian varieties-Galois representation and properties of ordinary reduction

Rutger Noot

Compositio Mathematica (1995)

  • Volume: 97, Issue: 1-2, page 161-171
  • ISSN: 0010-437X

How to cite

top

Noot, Rutger. "Abelian varieties-Galois representation and properties of ordinary reduction." Compositio Mathematica 97.1-2 (1995): 161-171. <http://eudml.org/doc/90372>.

@article{Noot1995,
author = {Noot, Rutger},
journal = {Compositio Mathematica},
keywords = {Galois representations; abelian varieties},
language = {eng},
number = {1-2},
pages = {161-171},
publisher = {Kluwer Academic Publishers},
title = {Abelian varieties-Galois representation and properties of ordinary reduction},
url = {http://eudml.org/doc/90372},
volume = {97},
year = {1995},
}

TY - JOUR
AU - Noot, Rutger
TI - Abelian varieties-Galois representation and properties of ordinary reduction
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 97
IS - 1-2
SP - 161
EP - 171
LA - eng
KW - Galois representations; abelian varieties
UR - http://eudml.org/doc/90372
ER -

References

top
  1. [Ad] S.L. Addington, Equivariant holomorphic maps of symmetric domains. Duke Math. J.55 (1987) 65-88. Zbl0649.32022MR883663
  2. [AGV] M. Artin, A. Grothendieck, J.L. Verdier, Théorie des topos et cohomologie étale des schémas (SGA 4). Lecture Notes in Math.269, 270, 305. Springer-Verlag (1973). Zbl0245.00002MR354654
  3. [Bo] F.A. Bogomolov, Sur l'algébricité des représentations l-adiques. C. R Acad. Sci.Paris, Série A, t. 290 (1980) 701-703. Zbl0457.14020
  4. [Ch] W. Chi, l-Adic and λ-adic representations associated to abelian varieties defined over number fields. Amer. J. Math.114 (1992) 315-353. Zbl0795.14024
  5. [De1] P. Deligne, Travaux de Shimura. Séminaire Bourbaki, Exposé 389, Février 1971. Lecture Notes in Math.244. Springer-Verlag (1971) pp. 123-165. Zbl0225.14007MR498581
  6. [De2] P. Deligne, Hodge cycles on abelian varieties, in: (P. Deligne, J. S. Milne, A. Ogus and K.-y. Shih) Hodge Cycles, Motives, and Shimura Varieties, Chapter I. Lecture Notes in Math.900. Springer-Verlag (1982) pp. 9-100. Zbl0537.14006
  7. [FW] G. Faltings, G. Wüstholz et al., Rational Points. Vieweg (1984). Zbl0588.14027MR766568
  8. [Ma] G.A. Margulis, Discrete Subgroups of Semisimple Lie Groups. Springer-Verlag (1991). Zbl0732.22008MR1090825
  9. [Og] A. Ogus, Hodge cycles and crystalline cohomology, in: (P. Deligne, J. S. Milne, A. Ogus and K.-y. Shih) Hodge Cycles, Motives, and Shimura Varieties, Chapter VI. Lecture Notes in Math.900. Springer-Verlag (1982) pp. 357-414. Zbl0538.14010
  10. [Po] H. Pohlmann, Algebraic cycles on abelian varieties of complex multiplication type. Ann. of Math.88 (1968) 161-180. Zbl0201.23201MR228500
  11. [Se1] J.-P. Serre, Letter to Ribet, 1-1-1981. 
  12. [Se2] J.-P. Serre, Lectures on the Mordell-Weil theorem. Vieweg (1989). Zbl0676.14005MR1002324
  13. [Tan] S.G. Tankeev, On algebraic cycles on surfaces and abelian varieties. Math USSR-Izv., vol. 18(2) (1982) 349-380. Zbl0551.14010MR616226
  14. [Tat] J. Tate, Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda). Séminaire Bourbaki, Exposé 352, Novembre 1968. Lecture Notes in Math.179. Springer-Verlag (1971) pp. 95-110. Zbl0212.25702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.