Abelian varieties-Galois representation and properties of ordinary reduction

Rutger Noot

Compositio Mathematica (1995)

  • Volume: 97, Issue: 1-2, page 161-171
  • ISSN: 0010-437X

How to cite

top

Noot, Rutger. "Abelian varieties-Galois representation and properties of ordinary reduction." Compositio Mathematica 97.1-2 (1995): 161-171. <http://eudml.org/doc/90372>.

@article{Noot1995,
author = {Noot, Rutger},
journal = {Compositio Mathematica},
keywords = {Galois representations; abelian varieties},
language = {eng},
number = {1-2},
pages = {161-171},
publisher = {Kluwer Academic Publishers},
title = {Abelian varieties-Galois representation and properties of ordinary reduction},
url = {http://eudml.org/doc/90372},
volume = {97},
year = {1995},
}

TY - JOUR
AU - Noot, Rutger
TI - Abelian varieties-Galois representation and properties of ordinary reduction
JO - Compositio Mathematica
PY - 1995
PB - Kluwer Academic Publishers
VL - 97
IS - 1-2
SP - 161
EP - 171
LA - eng
KW - Galois representations; abelian varieties
UR - http://eudml.org/doc/90372
ER -

References

top
  1. [Ad] S.L. Addington, Equivariant holomorphic maps of symmetric domains. Duke Math. J.55 (1987) 65-88. Zbl0649.32022MR883663
  2. [AGV] M. Artin, A. Grothendieck, J.L. Verdier, Théorie des topos et cohomologie étale des schémas (SGA 4). Lecture Notes in Math.269, 270, 305. Springer-Verlag (1973). Zbl0245.00002MR354654
  3. [Bo] F.A. Bogomolov, Sur l'algébricité des représentations l-adiques. C. R Acad. Sci.Paris, Série A, t. 290 (1980) 701-703. Zbl0457.14020
  4. [Ch] W. Chi, l-Adic and λ-adic representations associated to abelian varieties defined over number fields. Amer. J. Math.114 (1992) 315-353. Zbl0795.14024
  5. [De1] P. Deligne, Travaux de Shimura. Séminaire Bourbaki, Exposé 389, Février 1971. Lecture Notes in Math.244. Springer-Verlag (1971) pp. 123-165. Zbl0225.14007MR498581
  6. [De2] P. Deligne, Hodge cycles on abelian varieties, in: (P. Deligne, J. S. Milne, A. Ogus and K.-y. Shih) Hodge Cycles, Motives, and Shimura Varieties, Chapter I. Lecture Notes in Math.900. Springer-Verlag (1982) pp. 9-100. Zbl0537.14006
  7. [FW] G. Faltings, G. Wüstholz et al., Rational Points. Vieweg (1984). Zbl0588.14027MR766568
  8. [Ma] G.A. Margulis, Discrete Subgroups of Semisimple Lie Groups. Springer-Verlag (1991). Zbl0732.22008MR1090825
  9. [Og] A. Ogus, Hodge cycles and crystalline cohomology, in: (P. Deligne, J. S. Milne, A. Ogus and K.-y. Shih) Hodge Cycles, Motives, and Shimura Varieties, Chapter VI. Lecture Notes in Math.900. Springer-Verlag (1982) pp. 357-414. Zbl0538.14010
  10. [Po] H. Pohlmann, Algebraic cycles on abelian varieties of complex multiplication type. Ann. of Math.88 (1968) 161-180. Zbl0201.23201MR228500
  11. [Se1] J.-P. Serre, Letter to Ribet, 1-1-1981. 
  12. [Se2] J.-P. Serre, Lectures on the Mordell-Weil theorem. Vieweg (1989). Zbl0676.14005MR1002324
  13. [Tan] S.G. Tankeev, On algebraic cycles on surfaces and abelian varieties. Math USSR-Izv., vol. 18(2) (1982) 349-380. Zbl0551.14010MR616226
  14. [Tat] J. Tate, Classes d'isogénie des variétés abéliennes sur un corps fini (d'après T. Honda). Séminaire Bourbaki, Exposé 352, Novembre 1968. Lecture Notes in Math.179. Springer-Verlag (1971) pp. 95-110. Zbl0212.25702

NotesEmbed ?

top

You must be logged in to post comments.