Compact Kähler manifolds with hermitian semipositive anticanonical bundle
Jean-Pierre Demailly; Thomas Peternell; Michael Schneider
Compositio Mathematica (1996)
- Volume: 101, Issue: 2, page 217-224
- ISSN: 0010-437X
Access Full Article
topHow to cite
topDemailly, Jean-Pierre, Peternell, Thomas, and Schneider, Michael. "Compact Kähler manifolds with hermitian semipositive anticanonical bundle." Compositio Mathematica 101.2 (1996): 217-224. <http://eudml.org/doc/90443>.
@article{Demailly1996,
author = {Demailly, Jean-Pierre, Peternell, Thomas, Schneider, Michael},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {217-224},
publisher = {Kluwer Academic Publishers},
title = {Compact Kähler manifolds with hermitian semipositive anticanonical bundle},
url = {http://eudml.org/doc/90443},
volume = {101},
year = {1996},
}
TY - JOUR
AU - Demailly, Jean-Pierre
AU - Peternell, Thomas
AU - Schneider, Michael
TI - Compact Kähler manifolds with hermitian semipositive anticanonical bundle
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 101
IS - 2
SP - 217
EP - 224
LA - eng
UR - http://eudml.org/doc/90443
ER -
References
top- Aubin, T.: Equations du type Monge-Ampère sur les variétés kähleriennes compactes. C. R. Acad. Sci. Paris Ser.A283 (1976) 119-121; Bull. Sci. Math.102 (1978) 63-95. Zbl0374.53022MR494932
- Beauville, A.: Variétés kähleriennes dont la première classe de Chern est nulle. J. Diff. Geom.18 (1983) 775-782. Zbl0537.53056MR730926
- Berger, M.: Sur les groupes d'holonomie des variétés à connexion affine des variétés riemanniennes. Bull. Soc. Math. France83 (1955) 279-330. Zbl0068.36002MR79806
- Bishop, R.: A relation between volume, mean curvature and diameter. Amer. Math. Soc. Not.10 (1963) p. 364.
- Bogomolov, F.A.: On the decomposition of Kähler manifolds with trivial canonical class. Math. USSR Sbornik22 (1974) 580-583. Zbl0304.32016MR338459
- Bogomolov, F.A.: Kähler manifolds with trivial canonical class. Izvestija Akad. Nauk38 (1974) 11-21. Zbl0299.32022MR338459
- Brückmann, P. and Rackwitz, H.- G.: T-symmetrical tensor forms on complete intersections. Math. Ann.288 (1990) 627-635. Zbl0724.14032MR1081268
- Campana, F.: Fundamental group and positivity of cotangent bundles of compact Kähler manifolds. Preprint 1993. Zbl0845.32027MR1325789
- Cheeger, J. and Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Diff. Geom.6 (1971) 119-128. Zbl0223.53033MR303460
- Cheeger, J. and Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math.96 (1972) 413-443. Zbl0246.53049MR309010
- Demailly, J.-P., Peternell, T. and Schneider, M.: Kähler manifolds with numerically effective Ricci class. Compositio Math.89 (1993) 217-240. Zbl0884.32023MR1255695
- Demailly, J.-P., Peternell, T. and Schneider, M.: Compact complex manifolds with numerically effective tangent bundles. J. Alg. Geom.3 (1994) 295-345. Zbl0827.14027MR1257325
- Kobayashi, S.: Recent results in complex differential geometry. Jber. dt. Math.-Verein.83 (1981) 147-158. Zbl0467.53030MR635391
- Kobayashi, S.: Topics in complex differential geometry. In DMV Seminar, Vol. 3., Birkhäuser1983. Zbl0506.53029MR826252
- Lichnerowicz, A.: Variétés kähleriennes et première classe de Chern. J. Diff. Geom.1 (1967) 195-224. Zbl0167.20004MR226561
- Lichnerowicz, A.: Variétés Kählériennes à première classe de Chern non négative et variétés riemanniennes à courbure de Ricci généralisée non négative. J. Diff. Geom.6 (1971) 47-94. Zbl0231.53063MR300228
- Manivel, L.: Birational invariants of algebraic varieties. Preprint Institut Fourier, no. 257 (1993). Zbl0811.14008MR1310954
- Ogus, A.: The formal Hodge filtration. Invent. Math.31 (1976) 193-228. Zbl0339.14004MR401765
- Yau, S.T.: On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I. Comm. Pure and Appl. Math.31 (1978) 339-411. Zbl0369.53059MR480350
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.