Compact Kähler manifolds with hermitian semipositive anticanonical bundle

Jean-Pierre Demailly; Thomas Peternell; Michael Schneider

Compositio Mathematica (1996)

  • Volume: 101, Issue: 2, page 217-224
  • ISSN: 0010-437X

How to cite

top

Demailly, Jean-Pierre, Peternell, Thomas, and Schneider, Michael. "Compact Kähler manifolds with hermitian semipositive anticanonical bundle." Compositio Mathematica 101.2 (1996): 217-224. <http://eudml.org/doc/90443>.

@article{Demailly1996,
author = {Demailly, Jean-Pierre, Peternell, Thomas, Schneider, Michael},
journal = {Compositio Mathematica},
language = {eng},
number = {2},
pages = {217-224},
publisher = {Kluwer Academic Publishers},
title = {Compact Kähler manifolds with hermitian semipositive anticanonical bundle},
url = {http://eudml.org/doc/90443},
volume = {101},
year = {1996},
}

TY - JOUR
AU - Demailly, Jean-Pierre
AU - Peternell, Thomas
AU - Schneider, Michael
TI - Compact Kähler manifolds with hermitian semipositive anticanonical bundle
JO - Compositio Mathematica
PY - 1996
PB - Kluwer Academic Publishers
VL - 101
IS - 2
SP - 217
EP - 224
LA - eng
UR - http://eudml.org/doc/90443
ER -

References

top
  1. Aubin, T.: Equations du type Monge-Ampère sur les variétés kähleriennes compactes. C. R. Acad. Sci. Paris Ser.A283 (1976) 119-121; Bull. Sci. Math.102 (1978) 63-95. Zbl0374.53022MR494932
  2. Beauville, A.: Variétés kähleriennes dont la première classe de Chern est nulle. J. Diff. Geom.18 (1983) 775-782. Zbl0537.53056MR730926
  3. Berger, M.: Sur les groupes d'holonomie des variétés à connexion affine des variétés riemanniennes. Bull. Soc. Math. France83 (1955) 279-330. Zbl0068.36002MR79806
  4. Bishop, R.: A relation between volume, mean curvature and diameter. Amer. Math. Soc. Not.10 (1963) p. 364. 
  5. Bogomolov, F.A.: On the decomposition of Kähler manifolds with trivial canonical class. Math. USSR Sbornik22 (1974) 580-583. Zbl0304.32016MR338459
  6. Bogomolov, F.A.: Kähler manifolds with trivial canonical class. Izvestija Akad. Nauk38 (1974) 11-21. Zbl0299.32022MR338459
  7. Brückmann, P. and Rackwitz, H.- G.: T-symmetrical tensor forms on complete intersections. Math. Ann.288 (1990) 627-635. Zbl0724.14032MR1081268
  8. Campana, F.: Fundamental group and positivity of cotangent bundles of compact Kähler manifolds. Preprint 1993. Zbl0845.32027MR1325789
  9. Cheeger, J. and Gromoll, D.: The splitting theorem for manifolds of nonnegative Ricci curvature. J. Diff. Geom.6 (1971) 119-128. Zbl0223.53033MR303460
  10. Cheeger, J. and Gromoll, D.: On the structure of complete manifolds of nonnegative curvature. Ann. Math.96 (1972) 413-443. Zbl0246.53049MR309010
  11. Demailly, J.-P., Peternell, T. and Schneider, M.: Kähler manifolds with numerically effective Ricci class. Compositio Math.89 (1993) 217-240. Zbl0884.32023MR1255695
  12. Demailly, J.-P., Peternell, T. and Schneider, M.: Compact complex manifolds with numerically effective tangent bundles. J. Alg. Geom.3 (1994) 295-345. Zbl0827.14027MR1257325
  13. Kobayashi, S.: Recent results in complex differential geometry. Jber. dt. Math.-Verein.83 (1981) 147-158. Zbl0467.53030MR635391
  14. Kobayashi, S.: Topics in complex differential geometry. In DMV Seminar, Vol. 3., Birkhäuser1983. Zbl0506.53029MR826252
  15. Lichnerowicz, A.: Variétés kähleriennes et première classe de Chern. J. Diff. Geom.1 (1967) 195-224. Zbl0167.20004MR226561
  16. Lichnerowicz, A.: Variétés Kählériennes à première classe de Chern non négative et variétés riemanniennes à courbure de Ricci généralisée non négative. J. Diff. Geom.6 (1971) 47-94. Zbl0231.53063MR300228
  17. Manivel, L.: Birational invariants of algebraic varieties. Preprint Institut Fourier, no. 257 (1993). Zbl0811.14008MR1310954
  18. Ogus, A.: The formal Hodge filtration. Invent. Math.31 (1976) 193-228. Zbl0339.14004MR401765
  19. Yau, S.T.: On the Ricci curvature of a complex Kähler manifold and the complex Monge-Ampère equation I. Comm. Pure and Appl. Math.31 (1978) 339-411. Zbl0369.53059MR480350

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.