On infinitary finite length codes
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications (1986)
- Volume: 20, Issue: 4, page 483-494
- ISSN: 0988-3754
Access Full Article
topHow to cite
topStaiger, Ludwig. "On infinitary finite length codes." RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications 20.4 (1986): 483-494. <http://eudml.org/doc/92273>.
@article{Staiger1986,
author = {Staiger, Ludwig},
journal = {RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications},
keywords = {infinite products; -languages; decoding delay},
language = {eng},
number = {4},
pages = {483-494},
publisher = {EDP-Sciences},
title = {On infinitary finite length codes},
url = {http://eudml.org/doc/92273},
volume = {20},
year = {1986},
}
TY - JOUR
AU - Staiger, Ludwig
TI - On infinitary finite length codes
JO - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY - 1986
PB - EDP-Sciences
VL - 20
IS - 4
SP - 483
EP - 494
LA - eng
KW - infinite products; -languages; decoding delay
UR - http://eudml.org/doc/92273
ER -
References
top- BN. L. BOASSON and M. NIVAT, Adherences of languages, J. Comput. System Sci., Vol. 20, 1980, pp. 285-309. Zbl0471.68052MR584863
- C 1. R. M. CAPOCELLI, A note on uniquely decipherable codes, IEEE Trans. Information Theory, vol. IT-25, 1979, pp. 90-94. Zbl0388.94015MR514936
- C2. R. M. CAPOCELLI, On weakly prefix subsemigroups of a free semigroup in: Advances in Communications, D. G. LAINIOTIS and N. S. TSANNES, Eds, D. Reidel, Dordrecht 1980, pp. 123-129. Zbl0474.94032MR615938
- Da. M. DAVIS, Infinite games of perfect Information, in: Advances in Game Theory. Ann. of Mathematical Studies, No. 52, 1964, pp. 85-101. Zbl0133.13104MR170727
- D 1. Do L. V., Codes avec des mots infinis. RAIRO Inform. Theor., Vol. 16, 1982, pp. 371-386. Zbl0498.68053MR707638
- D 2. Do L. V., Sous-monoides et codes avec des mots infinis, Semigroup Forum, Vol. 26, 1983, pp. 75-87. Zbl0504.68054MR685117
- D 3. Do L. V., Contribution to combinatorics on words, Diss. B. Humboldt-Univ., Berlin, 1985.
- DK. P. DARONDEAU and L. KOTT, A formal proof System for infinitary rational expressions in: Automata on Infinite Words, M. NIVAT and D. PERRIN Eds, Lecture Notes in Computer Science, No. 192, Springer-Verlag, Berlin 1985, pp. 68-80. Zbl0575.68083MR814733
- L. V. I. LEVENSHTEIN, Some properties of coding and self adjusting automata for decoding messages, Problemy Kibernetiki, Vol. 11, 1964, pp. 63-121. Zbl0235.94002MR168396
- LS. R. LINDER und L. STAIGER, Algebraische Codierungstheorie-Theorie der sequentiellen Codierungen, Akademie-Verlag, Berlin 1977. Zbl0363.94016MR469495
- Sc. N. P. SCHÜTZENBERGER, On a question concerning certain free submonoids, J. Combinatorial Theory, Vol. 1, 1966, pp. 437-442. Zbl0158.02302MR218145
- Sh. St J. SHYR, Free Monoids and Languages, Lecture Notes, Soochow Univ., Taipei, 1979. Zbl0407.68076
- S 1. L. STAIGER, Eine Bemerkung zur Charakterisierung von Folgenmengen durch Wortmengen, Elektron. Inf. verarb. Kybernetik, Vol. 8, 1972, pp. 589-592. Zbl0336.94036MR345457
- S 2. L. STAIGER, Zur Topologie der regulären Mengen, Diss. A., Friedrich-Schiller-Univ., Jena, 1976.
- S 3. L. STAIGER, A note on connected ω-languages, Elektron. Inf. verarb. Kybernetik, Vol. 16, 1980, pp. 245-251. Zbl0452.68085
- W. K. WAGNER, On ω-regular sets, Information and Control, Vol. 43, 1979, pp. 123-177. Zbl0434.68061
Citations in EuDML Documents
top- I. Litovsky, Minimal generators of submonoids of
- B. Le Saëc, I. Litovsky, Rebootable and suffix-closed -power languages
- Ludwig Staiger, The entropy of Łukasiewicz-languages
- Ludwig Staiger, The entropy of Łukasiewicz-languages
- Henning Fernau, Klaus Reinhardt, Ludwig Staiger, Decidability of code properties
- J. Devolder, E. Timmerman, Finitary codes for biinfinite words
- Nguyen Huong Lâm, Do Long Van, On a class of infinitary codes
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.