Ideal class group annihilators
For a Riemannian foliation on a closed manifold, the first secondary invariant of Molino's central sheaf is an obstruction to tautness. Another obstruction is the class defined by the basic component of the mean curvature with respect to some metric. Both obstructions are proved to be the same up to a constant, and other geometric properties are also proved to be equivalent to tautness.
A topological result for non-Hausdorff spaces is proved and used to obtain a non-equivalence theorem for pseudogroups of local transformations. This theorem is applied to the holonomy pseudogroup of foliations.
For a Riemannian foliation, the topology of the corresponding spectral sequence is used to characterize the existence of a bundle-like metric such that the leaves are minimal submanifolds. When the codimension is , a simple characterization of this geometrical property is proved.
Let N be a closed orientable n-manifold, n ≥ 3, and K a compact non-empty subset. We prove that the existence of a transversally orientable codimension one foliation on N∖K with leaves homeomorphic to , in the relative topology, implies that K must be connected. If in addition one imposes some restrictions on the homology of K, then N must be a homotopy sphere. Next we consider C² actions of a Lie group diffeomorphic to on N and obtain our main result: if K, the set of singular points of the...
En este trabajo se presenta un modelo matemático general y operativo para los problemas de decisión unietápicos cuyas consecuencias se cuantifican mediante números difusos. Ese modelo va a permitir establecer los fundamentos de las utilidades difusas mediante un desarrollo axiomático, y generalizar las formas normal y extensiva del análisis bayesiano dando condiciones para la equivalencia de las mismas. Se examinará también la particularización del análisis bayesiano en forma extensiva a la estimación...
Page 1