Currently displaying 1 – 20 of 20

Showing per page

Order by Relevance | Title | Year of publication

Multiplicative characterization of Hilbert spaces and other interesting classes of Banach spaces.

A. Rodríguez Palacios — 1996

Revista Matemática de la Universidad Complutense de Madrid

For a Banach space X, we show how the existence of a norm-one element u in X and a norm-one continuous bilinear mapping f: X x X --> X satisfying f(x,u) = f(u,x) = x for all x in X, together with some more intrinsic conditions, can be utilized to characterize X as a member of some relevant subclass of the class of Banach spaces.

Weighted mixed-sensitivity minimization for stable distributed parameter plants under sampled data control

Delano R. CarterArmando A. Rodriguez — 1999

Kybernetika

This paper considers the problem of designing near-optimal finite-dimensional controllers for stable multiple-input multiple-output (MIMO) distributed parameter plants under sampled-data control. A weighted -style mixed-sensitivity measure which penalizes the control is used to define the notion of optimality. Controllers are generated by solving a “natural” finite-dimensional sampled-data optimization. A priori computable conditions are given on the approximants such that the resulting finite-...

On the strong metric dimension of the strong products of graphs

Let G be a connected graph. A vertex w ∈ V.G/ strongly resolves two vertices u,v ∈ V.G/ if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set S of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong resolving set for G is called the strong metric dimension of G. It is well known that the problem of computing this invariant is NP-hard. In this paper we study...

Diseño de redes intercambiadoras de calor con utilidades múltiples por programación lineal.

A. RodríguezJosé Antonio Souto GonzálezJuan J. Casares Long — 1991

Trabajos de Investigación Operativa

Se analiza la aplicación de un algoritmo de Programación de Redes, el método , al análisis y diseño de redes de intercambiadores de calor con utilidades externas múltiples. Tradicionalmente, los métodos heurísticos y termodinámicos han sido los más utilizados. Sin embargo, estos métodos presentan dificultades de aplicación en aquellos problemas, como el planteado en este trabajo, en los que se incorpora más de una utilidad externa de calentamiento. Por el contrario, el método lo resuelve de forma...

Closed Formulae for the Strong Metric Dimension of Lexicographi

Dorota KuziakIsmael G. YeroJuan A. Rodríguez-Velázquez — 2016

Discussiones Mathematicae Graph Theory

Given a connected graph G, a vertex w ∈ V (G) strongly resolves two vertices u, v ∈ V (G) if there exists some shortest u − w path containing v or some shortest v − w path containing u. A set S of vertices is a strong metric generator for G if every pair of vertices of G is strongly resolved by some vertex of S. The smallest cardinality of a strong metric generator for G is called the strong metric dimension of G. In this paper we obtain several relationships between the strong metric dimension...

Computing the Metric Dimension of a Graph from Primary Subgraphs

Dorota KuziakJuan A. Rodríguez-VelázquezIsmael G. Yero — 2017

Discussiones Mathematicae Graph Theory

Let G be a connected graph. Given an ordered set W = {w1, . . . , wk} ⊆ V (G) and a vertex u ∈ V (G), the representation of u with respect to W is the ordered k-tuple (d(u, w1), d(u, w2), . . . , d(u, wk)), where d(u, wi) denotes the distance between u and wi. The set W is a metric generator for G if every two different vertices of G have distinct representations. A minimum cardinality metric generator is called a metric basis of G and its cardinality is called the metric dimension of G. It is well...

On delay-dependent robust stability under model transformation of some neutral systems

This paper focuses on the delay-dependent robust stability of linear neutral delay systems. The systems under consideration are described by functional differential equations, with norm bounded time varying nonlinear uncertainties in the "state" and norm bounded time varying quasi-linear uncertainties in the delayed "state" and in the difference operator. The stability analysis is performed via the Lyapunov-Krasovskii functional approach. Sufficient delay dependent conditions for robust stability...

Page 1 Next

Download Results (CSV)