The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 9 of 9

Showing per page

Order by Relevance | Title | Year of publication

Meilleure approximation polynomiale et croissance des fonctions entières sur certaines variétés algébriques affines

Ahmed Zeriahi — 1987

Annales de l'institut Fourier

Soit K un compact polynomialement convexe de C n et V K son “potentiel logarithmique extrémal” dans C n . Supposons que K est régulier (i.e. V K continue) et soit f une fonction holomorphe sur un voisinage de K . On construit alors une suite { P } 1 de polynôme de n variables complexes avec deg ( P ) pour 1 , telle que l’erreur d’approximation max z K | f ( z ) - P ( z ) | soit contrôlée de façon assez précise en fonction du “pseudorayon de convergence” de f par rapport à K et du degré de convergence . Ce résultat est ensuite utilisé pour étendre...

A viscosity approach to degenerate complex Monge-Ampère equations

Ahmed Zeriahi — 2013

Annales de la faculté des sciences de Toulouse Mathématiques

This is the content of the lectures given by the author at the winter school KAWA3 held at the University of Barcelona in 2012 from January 30 to February 3. The main goal was to give an account of viscosity techniques and to apply them to degenerate Complex Monge-Ampère equations. We will survey the main techniques used in the viscosity approach and show how to adapt them to degenerate complex Monge-Ampère equations. The heart of the matter in this approach is the “Comparison Principle"...

Systèmes doublement orthogonaux de fonctions holomorphes et applications

Thanh Van NguyenAhmed Zeriahi — 1995

Banach Center Publications

0. Introduction. Nous donnons ici une étude systématique des systèmes doublement orthogonaux "de Bergman" et leurs applications à certains aspects de l'analyse pluricomplexe: espaces de fonctions holomorphes, fonctions séparément analytiques. C'est en quelque sorte un article de synthèse. On y trouve cependant des démonstrations détaillées qui n'ont paru nulle part ailleurs.

A priori estimates for weak solutions of complex Monge-Ampère equations

Slimane BenelkourchiVincent GuedjAhmed Zeriahi — 2008

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let X be a compact Kähler manifold and ω be a smooth closed form of bidegree ( 1 , 1 ) which is nonnegative and big. We study the classes χ ( X , ω ) of ω -plurisubharmonic functions of finite weighted Monge-Ampère energy. When the weight χ has fast growth at infinity, the corresponding functions are close to be bounded. We show that if a positive Radon measure is suitably dominated by the Monge-Ampère capacity, then it belongs to the range of the Monge-Ampère operator on some class χ ( X , ω ) . This is done by establishing...

Hölder continuous solutions to Monge–Ampère equations

Jean-Pierre DemaillySławomir DinewVincent GuedjPham Hoang HiepSławomir KołodziejAhmed Zeriahi — 2014

Journal of the European Mathematical Society

Let ( X , ω ) be a compact Kähler manifold. We obtain uniform Hölder regularity for solutions to the complex Monge-Ampère equation on X with L p right hand side, p > 1 . The same regularity is furthermore proved on the ample locus in any big cohomology class. We also study the range ( X , ω ) of the complex Monge-Ampère operator acting on ω -plurisubharmonic Hölder continuous functions. We show that this set is convex, by sharpening Kołodziej’s result that measures with L p -density belong to ( X , ω ) and proving that ( X , ω ) has the...

Page 1

Download Results (CSV)