Currently displaying 1 – 5 of 5

Showing per page

Order by Relevance | Title | Year of publication

Optimal boundary control for hyperdiffusion equation

Hanif HeidariAlaeddin Malek — 2010

Kybernetika

In this paper, we consider the solution of optimal control problem for hyperdiffusion equation involving boundary function of continuous time variable in its cost function. A specific direct approach based on infinite series of Fourier expansion in space and temporal integration by parts for analytical solution is proposed to solve optimal boundary control for hyperdiffusion equation. The time domain is divided into number of finite subdomains and optimal function is estimated at each subdomain...

Optimal control solution for Pennes' equation using strongly continuous semigroup

Alaeddin MalekGhasem Abbasi — 2014

Kybernetika

A distributed optimal control problem on and inside a homogeneous skin tissue is solved subject to Pennes' equation with Dirichlet boundary condition at one end and Rubin condition at the other end. The point heating power induced by conducting heating probe inserted at the tumour site as an unknown control function at specific depth inside biological body is preassigned. Corresponding pseudo-port Hamiltonian system is proposed. Moreover, it is proved that bioheat transfer equation forms a contraction...

Solving a class of non-convex quadratic problems based on generalized KKT conditions and neurodynamic optimization technique

Alaeddin MalekNajmeh Hosseinipour-Mahani — 2015

Kybernetika

In this paper, based on a generalized Karush-Kuhn-Tucker (KKT) method a modified recurrent neural network model for a class of non-convex quadratic programming problems involving a so-called Z -matrix is proposed. The basic idea is to express the optimality condition as a mixed nonlinear complementarity problem. Then one may specify conditions for guaranteeing the global solutions of the original problem by using results from the S-lemma. This process is proved by building up a dynamic system from...

Efficient algorithm to solve optimal boundary control problem for Burgers' equation

In this paper, we propose a novel algorithm for solving an optimal boundary control problem of the Burgers' equation. The solving method is based on the transformation of the original problem into a homogeneous boundary conditions problem. This transforms the original problem into an optimal distributed control problem. The modal expansion technique is applied to the distributed control problem of the Burgers' equation to generate a low-dimensional dynamical system. The control parametrization method...

Solving a class of Hamilton-Jacobi-Bellman equations using pseudospectral methods

This paper presents a numerical approach to solve the Hamilton-Jacobi-Bellman (HJB) problem which appears in feedback solution of the optimal control problems. In this method, first, by using Chebyshev pseudospectral spatial discretization, the HJB problem is converted to a system of ordinary differential equations with terminal conditions. Second, the time-marching Runge-Kutta method is used to solve the corresponding system of differential equations. Then, an approximate solution for the HJB problem...

Page 1

Download Results (CSV)