The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 4 of 4

Showing per page

Order by Relevance | Title | Year of publication

On the Moser-Onofri and Prékopa-Leindler inequalities.

Alessandro Ghigi — 2005

Collectanea Mathematica

Using elementary convexity arguments involving the Legendre transformation and the Prékopa-Leindler inequality, we prove the sharp Moser-Onofri inequality, which says that 1/16π ∫|∇φ|2 + 1/4π ∫ φ - log (1/4π ∫ eφ) ≥ 0 for any funcion φ ∈ C(S2).

On the approximation of functions on a Hodge manifold

Alessandro Ghigi — 2012

Annales de la faculté des sciences de Toulouse Mathématiques

If ( M , ω ) is a Hodge manifold and f C ( M , ) we construct a canonical sequence of functions f N such that f N f in the C topology. These functions have a simple geometric interpretation in terms of the moment map and they are real algebraic, in the sense that they are regular functions when M is regarded as a real algebraic variety. The definition of f N is inspired by Berezin-Toeplitz quantization and by ideas of Donaldson. The proof follows quickly from known results of Fine, Liu and Ma.

Symmetries and Kähler-Einstein metrics

Claudio ArezzoAlessandro Ghigi — 2005

Bollettino dell'Unione Matematica Italiana

We consider Fano manifolds M that admit a collection of finite automorphism groups G 1 , ... , G k , such that the quotients M / G i are smooth Fano manifolds possessing a Kähler-Einstein metric. Under some numerical and smoothness assumptions on the ramification divisors, we prove that M admits a Kähler-Einstein metric too.

Page 1

Download Results (CSV)