The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 7 of 7

Showing per page

Order by Relevance | Title | Year of publication

Une remarque sur les fonctions monotones

Alexandre Rajchman — 1921

Fundamenta Mathematicae

L'objet de cette note est la démonstration du théorème suivant: La somme d'une série convergente des fonctions non décroissantes, telles que la dérivée de chacune d'elles s'annule presque partout, est une fonction non décroissante à dérivée nulle presque partout.

Sur l'unicité du développement trigonométrique

Alexandre Rajchman — 1922

Fundamenta Mathematicae

Le but de cette note est de démontrer le suivant théorème: Si la série trigonométrique a_0/2 + ∑_{n=1}^{n = ∞}(a_n cos2πnx + b_n sin2πnx ), dont les coefficients a_n, b_n tendent vers zéro quand n → ∞, converge vers zéro partout, sauf peut-être aux points d'un ensemble fermé Z, ou, plus généralement, si partout, sauf peut-être aux points de Z, on a a_0/2 + lim_{r → 1} ∑_{n=1}^{n = ∞}(a_n cos2πnx + b_n sin2π nx )r^n =0, alors, pourvu que l'ensemble Z soit du type Hardy-Littlevood-Steinhaus, on aura...

Sur la dérivabilité des fonctions monotones

Alexandre RajchmanStanisław Saks — 1923

Fundamenta Mathematicae

Le but de cette note est de donner une démonstration simple et élémentaire au i • téorème de Lebesgue, d'après lequel toute fonction monotone est presque partout dérivable; • théorème de Fubini, d'après lequel une série convergente de fonctions non décroissantes peut être presque partout différentiée terme à terme.

Page 1

Download Results (CSV)