Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

Normability of Lorentz spaces—an alternative approach

Amiran GogatishviliFilip Soudský — 2014

Czechoslovak Mathematical Journal

We study normability properties of classical Lorentz spaces. Given a certain general lattice-like structure, we first prove a general sufficient condition for its associate space to be a Banach function space. We use this result to develop an alternative approach to Sawyer’s characterization of normability of a classical Lorentz space of type Λ . Furthermore, we also use this method in the weak case and characterize normability of Λ v . Finally, we characterize the linearity of the space Λ v by a simple...

Embeddings between weighted Copson and Cesàro function spaces

Amiran GogatishviliRza MustafayevTuğçe Ünver — 2017

Czechoslovak Mathematical Journal

In this paper, characterizations of the embeddings between weighted Copson function spaces Cop p 1 , q 1 ( u 1 , v 1 ) and weighted Cesàro function spaces Ces p 2 , q 2 ( u 2 , v 2 ) are given. In particular, two-sided estimates of the optimal constant c in the inequality d ( 0 0 t f ( τ ) p 2 v 2 ( τ ) d τ q 2 / p 2 u 2 ( t ) d t ) 1 / q 2 c 0 t f ( τ ) p 1 v 1 ( τ ) d τ q 1 / p 1 u 1 ( t ) d t 1 / q 1 , d where p 1 , p 2 , q 1 , q 2 ( 0 , ) , p 2 q 2 and u 1 , u 2 , v 1 , v 2 are weights on ( 0 , ) , are obtained. The most innovative part consists of the fact that possibly different parameters p 1 and p 2 and possibly different inner weights v 1 and v 2 are allowed. The proof is based on the combination of duality techniques with estimates...

Optimality of embeddings of Bessel-potential-type spaces into generalized Hölder spaces.

Amiran GogatishviliJúlio S. NevesBohumír Opic — 2005

Publicacions Matemàtiques

We establish the sharpness of embedding theorems for Bessel-potential spaces modelled upon Lorentz-Karamata spaces and we prove the non-compactness of such embeddings. Target spaces in our embeddings are generalized Hölder spaces. As consequences of our results, we get continuous envelopes of Bessel-potential spaces modelled upon Lorentz-Karamata spaces.

Page 1

Download Results (CSV)