A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.
A strongly coupled cross-diffusion model for two competing species in a heterogeneous environment is analyzed. We sketch the proof of an existence result for the evolution problem with non-flux boundary conditions in one space dimension, completing previous results [4]. The proof is based on a symmetrization of the problem via an exponential transformation of variables and the use of an entropy functional.
A one-dimensional quantum Euler-Poisson system for semiconductors for the electron density and the electrostatic potential in bounded intervals is considered. The existence and uniqueness of strong solutions with positive electron density is shown for quite general (possibly non-convex or non-monotone) pressure-density functions under a “subsonic” condition, i.e. assuming sufficiently small current densities. The proof is based on a reformulation of the dispersive third-order equation for the electron...
A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.
A high-order compact finite difference scheme for a fully nonlinear parabolic differential equation is analyzed. The equation arises in the modeling of option prices in financial markets with transaction costs. It is shown that the finite difference solution converges locally uniformly to the unique viscosity solution of the continuous equation. The proof is based on a careful study of the discretization matrices and on an abstract convergence result due to Barles and Souganides.
A high-order compact finite difference scheme for a fully nonlinear
parabolic differential equation is analyzed. The equation arises in the
modeling of option prices in financial markets with transaction costs.
It is shown that the finite difference solution converges locally
uniformly to the unique viscosity solution of the continuous equation.
The proof is based on a careful study of the discretization matrices and on
an abstract convergence result due to Barles and Souganides.
Some results on cross-diffusion systems with entropy structure are reviewed. The focus is on local-in-time existence results for general systems with normally elliptic diffusion operators, due to Amann, and global-in-time existence theorems by Lepoutre, Moussa, and co-workers for cross-diffusion systems with an additional Laplace structure. The boundedness-by-entropy method allows for global bounded weak solutions to certain diffusion systems. Furthermore, a partial result on the uniqueness of weak...
En este trabajo se estudia de modo analítico y numérico un problema en ecuaciones diferenciales en derivadas parciales que modela la dinámica de dos poblaciones afectadas por la presión poblacional inter e intraespecíficas y por un potencial medioambiental. Debido a los términos de difusión cruzada, el problema es fuertemente no lineal por lo que el principio del máximo y los métodos relacionados con el mismo no pueden ser aplicados. En primer lugar demostramos la existencia de soluciones débiles...
Download Results (CSV)