Dualite pour les feuilletages transversalement holomorphes.
Soit un feuilletage de codimension sur une variété compacte . On montre que le complexe des formes basiques admet une décomposition de Hodge. Il en résulte que la cohomologie basique de est de dimension finie et vérifie la dualité de Poincaré si et seulemnt si .
La cohomologie de Dolbeault feuilletée mesure l’obstruction à résoudre le problème de Cauchy-Riemann le long des feuilles d’un feuilletage complexe. En utilisant des méthodes de cohomologie des groupes, nous calculons cette cohomologie pour deux classes de feuilletages : i) le feuilletage complexe affine de Reeb de dimension (complexe) 2 sur la variété de Hopf de dimension 5 ; ii) les feuilletages complexes sur le tore hyperbolique (fibration en tores de dimension n au-dessus d’un cercle et de monodromie...
Page 1