The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 11 of 11

Showing per page

Order by Relevance | Title | Year of publication

Function spaces on the Olśhanskiĭsemigroup and the Gel'fand-Gindikin program

Khalid KoufanyBent Ørsted — 1996

Annales de l'institut Fourier

For the scalar holomorphic discrete series representations of SU ( 2 , 2 ) and their analytic continuations, we study the spectrum of a non-compact real form of the maximal compact subgroup inside SU ( 2 , 2 ) . We construct a Cayley transform between the Ol’shanskiĭ semigroup having U ( 1 , 1 ) as Šilov boundary and an open dense subdomain of the Hermitian symmetric space for SU ( 2 , 2 ) . This allows calculating the composition series in terms of harmonic analysis on U ( 1 , 1 ) . In particular we show that the Ol’shanskiĭ Hardy space for U ( 1 , 1 ) is different...

A Cauchy Problem for Elliptic Invariant Differential Operators and Continuity of a generalized Berezin transform

Bent ØrstedJorge Vargas — 2007

Annales de l’institut Fourier

In this note, we generalize the results in our previous paper on the Casimir operator and Berezin transform, by showing the ( L 2 , L 2 ) -continuity of a generalized Berezin transform associated with a branching problem for a class of unitary representations defined by invariant elliptic operators; we also show, that under suitable general conditions, this generalized Berezin transform is ( L p , L p ) -continuous for 1 p .

Conformally invariant trilinear forms on the sphere

Jean-Louis ClercBent Ørsted — 2011

Annales de l’institut Fourier

To each complex number λ is associated a representation π λ of the conformal group S O 0 ( 1 , n ) on 𝒞 ( S n - 1 ) (spherical principal series). For three values λ 1 , λ 2 , λ 3 , we construct a trilinear form on 𝒞 ( S n - 1 ) × 𝒞 ( S n - 1 ) × 𝒞 ( S n - 1 ) , which is invariant by π λ 1 π λ 2 π λ 3 . The trilinear form, first defined for ( λ 1 , λ 2 , λ 3 ) in an open set of 3 is extended meromorphically, with simple poles located in an explicit family of hyperplanes. For generic values of the parameters, we prove uniqueness of trilinear invariant forms.

Page 1

Download Results (CSV)