The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Ce travail est essentiellement consacré à la construction d’exemples effectifs de couples de nombres réels à constantes de Markov finies, tels que et soient -linéairement indépendants, et satisfaisant à la conjecture de Littlewood.
In this paper, we study rational approximations for algebraic functions in characteristic p > 0. We obtain results for elements satisfying an equation of the type , where q is a power of p.
We study a simultaneous diophantine problem related to Littlewood’s conjecture. Using known estimates for linear forms in -adic logarithms, we prove that a previous result, concerning the particular case of quadratic numbers, is close to be the best possible.
Download Results (CSV)