Récemment, B. Green et T. Tao ont montré que : répondant ainsi à une question ancienne à la formulation particulièrement simple. La démonstration n’utilise aucune des méthodes “transcendantes” ni aucun des grands théorèmes de la théorie analytique des nombres. Elle est écrite dans un proche de celui de la théorie ergodique, en particulier de celui de la preuve par Furstenberg du théorème de Szemerédi, mais elle n’utilise aucun théorème provenant de cette théorie. La méthode peut ainsi être considérée...
Recently, T. Tao gave a finitary proof of a convergence theorem for multiple averages with several commuting transformations, and soon thereafter T. Austin gave an ergodic proof of the same result. Although we give here another proof of the same theorem, this is not the main goal of this paper. Our main concern is to provide tools for the case of several commuting transformations, similar to the tools successfully used in the case of a single transformation, with the idea that they may be used in...
In his proof of Szemerédi’s Theorem, Gowers introduced certain norms that are defined on a parallelepiped structure. A natural question is on which sets a parallelepiped structure (and thus a Gowers norm) can be defined. We focus on dimensions and and show when this possible, and describe a correspondence between the parallelepiped structures and nilpotent groups.
En topologie dynamique, une famille classique de systèmes est celle formée par les rotations minimales. La classe des nilsystèmes et de leurs limites projectives en est une extension naturelle. L’étude de ces systèmes est ancienne mais connaît actuellement un renouveau à cause de ses applications, à la fois à la théorie ergodique et en théorie additive des nombres.
Les rotations minimales sont caractérisées par le fait que la relation de proximalité régionale est l’égalité. Nous introduisons une...
Nilsequences arose in the study of the multiple ergodic averages associated to Furstenberg’s proof of Szemerédi’s Theorem and have since played a role in problems in additive combinatorics. Nilsequences are a generalization of almost periodic sequences and we study which portions of the classical theory for almost periodic sequences can be generalized for two step nilsequences. We state and prove basic properties for two step nilsequences and give a classification scheme for them.
Soit , algèbre de convolution des mesures de Radon bornées sur le groupe abélien localement compact . Pour que soit fermé dans (ou, ce qui revient au même, pour que soit fermé), il faut et il suffit que soit la convolution d’une mesure inversible et d’une mesure idempotente.
We analyze and cite applications of various, loosely related notions of uniformity inherent to the phenomenon of (multiple) recurrence in ergodic theory. An assortment of results are obtained, among them sharpenings of two theorems due to Bourgain. The first of these, which in the original guarantees existence of sets x,x+h, in subsets E of positive measure in the unit interval, with lower bounds on h depending only on m(E), is expanded to the case of arbitrary finite polynomial configurations...
Download Results (CSV)