The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 6 of 6

Showing per page

Order by Relevance | Title | Year of publication

On path-quasar Ramsey numbers

Binlong LiBo Ning — 2015

Annales UMCS, Mathematica

Let G1 and G2 be two given graphs. The Ramsey number R(G1,G2) is the least integer r such that for every graph G on r vertices, either G contains a G1 or Ḡ contains a G2. Parsons gave a recursive formula to determine the values of R(Pn,K1,m), where Pn is a path on n vertices and K1,m is a star on m+1 vertices. In this note, we study the Ramsey numbers R(Pn,K1,m), where Pn is a linear forest on m vertices. We determine the exact values of R(Pn,K1∨Fm) for the cases m ≤ n and m ≥ 2n, and for the case...

Heavy Subgraphs, Stability and Hamiltonicity

Binlong LiBo Ning — 2017

Discussiones Mathematicae Graph Theory

Let G be a graph. Adopting the terminology of Broersma et al. and Čada, respectively, we say that G is 2-heavy if every induced claw (K1,3) of G contains two end-vertices each one has degree at least |V (G)|/2; and G is o-heavy if every induced claw of G contains two end-vertices with degree sum at least |V (G)| in G. In this paper, we introduce a new concept, and say that G is S-c-heavy if for a given graph S and every induced subgraph G′ of G isomorphic to S and every maximal clique C of G′, every...

On path-quasar Ramsey numbers

Binlong LiBo Ning — 2014

Annales Universitatis Mariae Curie-Skłodowska, sectio A – Mathematica

Let G 1 and G 2 be two given graphs. The Ramsey number R ( G 1 , G 2 ) is the least integer r such that for every graph G on r vertices, either G contains a G 1 or G ¯ contains a G 2 . Parsons gave a recursive formula to determine the values of R ( P n , K 1 , m ) , where P n is a path on n vertices and K 1 , m is a star on m + 1 vertices. In this note, we study the Ramsey numbers R ( P n , K 1 F m ) , where F m is a linear forest on m vertices. We determine the exact values of R ( P n , K 1 F m ) for the cases m n and m 2 n , and for the case that F m has no odd component. Moreover, we give a lower...

Heavy subgraph pairs for traceability of block-chains

Binlong LiHajo BroersmaShenggui Zhang — 2014

Discussiones Mathematicae Graph Theory

A graph is called traceable if it contains a Hamilton path, i.e., a path containing all its vertices. Let G be a graph on n vertices. We say that an induced subgraph of G is o−1-heavy if it contains two nonadjacent vertices which satisfy an Ore-type degree condition for traceability, i.e., with degree sum at least n−1 in G. A block-chain is a graph whose block graph is a path, i.e., it is either a P1, P2, or a 2-connected graph, or a graph with at least one cut vertex and exactly two end-blocks....

Forbidden Subgraphs for Hamiltonicity of 1-Tough Graphs

Binlong LiHajo J. BroersmaShenggui Zhang — 2016

Discussiones Mathematicae Graph Theory

A graph G is said to be 1-tough if for every vertex cut S of G, the number of components of G − S does not exceed |S|. Being 1-tough is an obvious necessary condition for a graph to be hamiltonian, but it is not sufficient in general. We study the problem of characterizing all graphs H such that every 1-tough H-free graph is hamiltonian. We almost obtain a complete solution to this problem, leaving H = K1 ∪ P4 as the only open case.

Page 1

Download Results (CSV)