Currently displaying 1 – 10 of 10

Showing per page

Order by Relevance | Title | Year of publication

On the Gevrey hypo-ellipticity of sums of squares of vector fields

Antonio BoveFrançois Treves — 2004

Annales de l’institut Fourier

The article studies a second-order linear differential operator of the type - L = X 1 2 + + X r 2 , i. e., a sum of squares of real, and real-analytic, vector fields X i . The conjectured necessary and sufficient condition for analytic hypo- ellipticity, based on the Poisson stratification of the characteristic variety, is recalled in simple analytic and geometric terms. It is conjectured that the microlocal Gevrey hypo-ellipticity of L depends on the restrictions of the principal symbol σ L to 2 D or 4 D symplectic...

Cauchy problem for hyperbolic operators with triple characteristics of variable multiplicity

Enrico BernardiAntonio BoveVesselin Petkov — 2010

Journées Équations aux dérivées partielles

We study a class of third order hyperbolic operators P in G = Ω { 0 t T } , Ω n + 1 with triple characteristics on t = 0 . We consider the case when the fundamental matrix of the principal symbol for t = 0 has a couple of non vanishing real eigenvalues and P is strictly hyperbolic for t > 0 . We prove that P is strongly hyperbolic, that is the Cauchy problem for P + Q is well posed in G for any lower order terms Q .

An Elliptic Boundary Value Problem with Unbounded Coefficients in a Half Space

Antonio BoveBruno FranchiEnrico Obrecht — 1978

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

In questa nota diamo alcuni risultati su di una classe di problemi al contorno per equazioni ellittiche a coefficienti polinomiali in un semispazio. Si stabilisce 1'esistenza di una parametrice destra e di una parametrice sinistra del problema; si stabiliscono inoltre stime a priori del problema e di quello aggiunto.

Page 1

Download Results (CSV)