Boundary value problems of linear elastostatics and hydrostatics on Lipschitz domains
In this note I will describe some recent results, obtained jointly with R. Fefferman and J. Pipher [RF-K-P], on the Dirichlet problem for second-order, divergence form elliptic equations, and some work in progress with J. Pipher [K-P] on the corresponding results for the Neumann and regularity problems.
We define a class of pseudodifferential operators with symbols a(x,ξ) without any regularity assumptions in the x variable and explore their boundedness properties. The results are applied to obtain estimates for certain maximal operators associated with oscillatory singular integrals.
Our concern in this paper is to describe a class of Hardy spaces H(D) for 1 ≤ p < 2 on a Lipschitz domain D ⊂ R when n ≥ 3, and a certain smooth counterpart of H(D) on R, by providing an atomic decomposition and a description of their duals.
We establish absolute continuity of the elliptic measure associated to certain second order elliptic equations in either divergence or nondivergence form, with drift terms, under minimal smoothness assumptions on the coefficients.
Page 1 Next