The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 18 of 18

Showing per page

Order by Relevance | Title | Year of publication

Solvability of a forced autonomous Duffing's equation with periodic boundary conditions in the presence of damping

Chaitan P. Gupta — 1993

Applications of Mathematics

Let g : 𝐑 𝐑 be a continuous function, e : [ 0 , 1 ] 𝐑 a function in L 2 [ 0 , 1 ] and let c 𝐑 , c 0 be given. It is proved that Duffing’s equation u ' ' + c u ' + g ( u ) = e ( x ) , 0 < x < 1 , u ( 0 ) = u ( 1 ) , u ' ( 0 ) = u ' ( 1 ) in the presence of the damping term has at least one solution provided there exists an 𝐑 > 0 such that g ( u ) u 0 for | u | 𝐑 and 0 1 e ( x ) d x = 0 . It is further proved that if g is strictly increasing on 𝐑 with lim u - g ( u ) = - , lim u g ( u ) = and it Lipschitz continuous with Lipschitz constant α < 4 π 2 + c 2 , then Duffing’s equation given above has exactly one solution for every e L 2 [ 0 , 1 ] .

A priori estimates and solvability of a non-resonant generalized multi-point boundary value problem of mixed Dirichlet-Neumann-Dirichlet type involving a p -Laplacian type operator

Chaitan P. Gupta — 2007

Applications of Mathematics

This paper is devoted to the problem of existence of a solution for a non-resonant, non-linear generalized multi-point boundary value problem on the interval [ 0 , 1 ] . The existence of a solution is obtained using topological degree and some a priori estimates for functions satisfying the boundary conditions specified in the problem.

On the solvability of some multi-point boundary value problems

Chaitan P. GuptaSotiris K. NtouyasPanagiotis Ch. Tsamatos — 1996

Applications of Mathematics

Let f : [ 0 , 1 ] × 2 be a function satisfying Caratheodory’s conditions and let e ( t ) L 1 [ 0 , 1 ] . Let ξ i , τ j ( 0 , 1 ) , c i , a j , all of the c i ’s, (respectively, a j ’s) having the same sign, i = 1 , 2 , ... , m - 2 , j = 1 , 2 , ... , n - 2 , 0 < ξ 1 < ξ 2 < ... < ξ m - 2 < 1 , 0 < τ 1 < τ 2 < ... < τ n - 2 < 1 be given. This paper is concerned with the problem of existence of a solution for the multi-point boundary value problems x ' ' ( t ) = f ( t , x ( t ) , x ' ( t ) ) + e ( t ) , t ( 0 , 1 ) E x ( 0 ) = i = 1 m - 2 c i x ' ( ξ i ) , x ( 1 ) = j = 1 n - 2 a j x ( τ j ) B C m n and x ' ' ( t ) = f ( t , x ( t ) , x ' ( t ) ) + e ( t ) , t ( 0 , 1 ) E x ( 0 ) = i = 1 m - 2 c i x ' ( ξ i ) , x ' ( 1 ) = j = 1 n - 2 a j x ' ( τ j ) , B C m n ' Conditions for the existence of a solution for the above boundary value problems are given using Leray-Schauder Continuation theorem.

Page 1

Download Results (CSV)