Nous donnons une version -analogue de l’asymptotique Gevrey et de la sommabilité de Borel, dues respectivement à G. Watson et E. Borel et systématiquement développées depuis une quinzaine d’années par J.-P. Ramis, Y. Sibuya, etc. Le but de ces auteurs était l’étude des équations différentielles dans le champ complexe. De même notre but est l’étude des équations aux -différences dans le champ complexe, dans la ligne de G.D. Birkhoff et W.J. Trjitzinsky.
Plus précisément, nous introduisons...
Nous introduisons une version -analogue du procédé d’accélération élémentaire d’Écalle-Martinet-Ramis et définissons la notion de série entière -multisommable. Nous montrons que toute série entière solution formelle d’une équation aux -différences linéaire analytique est -multisommable.
In this paper, we study a class of first order nonlinear degenerate partial differential equations with singularity at . Using exponential-type Nagumo norm approach, the Gevrey asymptotic analysis is extended to case of holomorphic parameters in a natural way. A sharp condition is then established to deduce the -summability of the formal solutions. Furthermore, analytical solutions in conical domains are found for each type of these nonlinear singular PDEs.
This paper is divided in two parts. In the first part we study a convergent -analog of the divergent Euler series, with , and we show how the Borel sum of a generic Gevrey formal solution to a differential equation can be uniformly approximated on a convenient sector by a meromorphic solution of a corresponding -difference equation. In the second part, we work under the assumption . In this case, at least four different -Borel sums of a divergent power series solution of an irregular singular...
Download Results (CSV)