The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present the rough path theory introduced by Lyons, using the swewing lemma of Feyel and de Lapradelle.
We study linear rough differential equations and we solve perturbed linear rough differential equations using the Duhamel principle. These results provide us with a key technical point to study the regularity of the differential of the Itô map in a subsequent article. Also, the notion of linear rough differential equations leads to consider multiplicative functionals with values in Banach algebras more general than tensor algebras and to consider extensions of classical results such as the Magnus...
We propose some construction of enhanced Gaussian processes using
Karhunen-Loeve expansion. We obtain a characterization and some
criterion of existence and uniqueness. Using rough-path theory, we
derive some Wong-Zakai Theorem.
A stochastic “Fubini” lemma and an approximation theorem for
integrals on the plane are used to produce a simulation algorithm
for an anisotropic fractional Brownian sheet. The convergence rate
is given. These results are valuable for any value of the Hurst
parameters Finally, the
approximation process
is iterative on the quarter plane
A sample of such simulations can be used to test estimators
of the parameters = 1,2.
Download Results (CSV)