The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Currently displaying 1 – 8 of 8

Showing per page

Order by Relevance | Title | Year of publication

Monotonicity properties of minimizers and relaxation for autonomous variational problems

Giovanni CupiniCristina Marcelli — 2011

ESAIM: Control, Optimisation and Calculus of Variations

We consider the following classical autonomous variational problem minimize F ( v ) = a b f ( v ( x ) , v ' ( x ) ) x ̣ : v A C ( [ a , b ] ) , v ( a ) = α , v ( b ) = β , where the Lagrangianf is possibly neither continuous, nor convex, nor coercive. We prove a monotonicity property of the minimizers stating that they satisfy the maximum principle or the minimum one. By virtue of such a property, applying recent results concerning constrained variational problems, we derive a relaxation theorem, the DuBois-Reymond necessary condition and some existence...

A result on equiabsolute integrability

Cristina MarcelliAnna Salvadori — 1990

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

We prove the equiabsolute integrability of a class of gradients, for functions in W 1 , 1 . The present result appears as the localized version of well-known classical theorems.

Monotonicity properties of minimizers and relaxation for autonomous variational problems

Giovanni CupiniCristina Marcelli — 2011

ESAIM: Control, Optimisation and Calculus of Variations

We consider the following classical autonomous variational problem minimize F ( v ) = a b f ( v ( x ) , v ' ( x ) ) x ̣ : v A C ( [ a , b ] ) , v ( a ) = α , v ( b ) = β , where the Lagrangian f is possibly neither continuous, nor convex, nor coercive. We prove a monotonicity property of the minimizers stating that they satisfy the maximum principle or the minimum one. By virtue of such a property, applying recent results concerning constrained variational problems, we derive a relaxation theorem, the DuBois-Reymond...

Heteroclinic orbits in plane dynamical systems

Luisa MalagutiCristina Marcelli — 2002

Archivum Mathematicum

We consider general second order boundary value problems on the whole line of the type u ' ' = h ( t , u , u ' ) , u ( - ) = 0 , u ( + ) = 1 , for which we provide existence, non-existence, multiplicity results. The solutions we find can be reviewed as heteroclinic orbits in the ( u , u ' ) plane dynamical system.

Page 1

Download Results (CSV)