Currently displaying 1 – 18 of 18

Showing per page

Order by Relevance | Title | Year of publication

The Schreier Property and Gauss' Lemma

Daniel D. AndersonMuhammad Zafrullah — 2007

Bollettino dell'Unione Matematica Italiana

Let D be an integral domain with quotient field D . Recall that D is Schreier if D is integrally closed and for all x , y , z D { 0 } , x | y z implies that x = r s where r | y e s | z . A GCD domain is Schreier. We show that an integral domain D is a GCD domain if and only if (i) for each pair a , b D { 0 } , there is a finitely generated ideal B such that a D b D = B v and (ii) every quadratic in D [ X ] that is a product of two linear polynomials in K [ X ] is a product of two linear polynomials in D [ X ] . We also show that D is Schreier if and only if every polynomial...

Unique factorization in non-atomic integral domains

D. D. AndersonJ. L. MottM. Zafrullah — 1999

Bollettino dell'Unione Matematica Italiana

In un UFD ogni elemento non unitario 0 può essere espresso in modo unico nella forma u p 1 a 1 p n a n dove u è un elemento unitario, i p i sono primi non associati e ogni a i 1 . Per studiare questa fattorizzazione in un ambito non atomico, si prende in esame un certo numero di generalizzazioni della potenza di un primo p n . Per numerose di queste generalizzazioni si prova che si ottiene una forma di fattorizzazione unica e la si mette in relazione, nel caso in cui R è un dominio di integrità, con rappresentazioni di carattere...

Page 1

Download Results (CSV)