Let be a space of homogeneous type, i.e. X is a set, ϱ is a quasi-metric on X with the property that there are constants θ ∈ (0,1] and C₀ > 0 such that for all x,x’,y ∈ X,
,
and μ is a nonnegative Borel regular measure on X such that for some d > 0 and all x ∈ X,
.
Let ε ∈ (0,θ], |s| < ε and maxd/(d+ε),d/(d+s+ε) < q ≤ ∞. The author introduces new inhomogeneous Triebel-Lizorkin spaces and establishes their frame characterizations by first establishing a Plancherel-Pólya-type inequality...