Currently displaying 1 – 12 of 12

Showing per page

Order by Relevance | Title | Year of publication

The minimizing of the Nielsen root classes

Daciberg GonçalvesClaudemir Aniz — 2004

Open Mathematics

Given a map f: X→Y and a Nielsen root class, there is a number associated to this root class, which is the minimal number of points among all root classes which are H-related to the given one for all homotopies H of the map f. We show that for maps between closed surfaces it is possible to deform f such that all the Nielsen root classes have cardinality equal to the minimal number if and only if either N R[f]≤1, or N R[f]>1 and f satisfies the Wecken property. Here N R[f] denotes the Nielsen...

Realization of primitive branched coverings over closed surfaces following the hurwitz approach

Let V be a closed surface, H⊑π1(V) a subgroup of finite index l and D=[A 1,...,A m] a collection of partitions of a given number d≥2 with positive defect v(D). When does there exist a connected branched covering f:W→V of order d with branch data D and f∶W→V It has been shown by geometric arguments [4] that, for l=1 and a surface V different from the sphere and the projective plane, the corresponding branched covering exists (the data D is realizable) if and only if the data D fulfills the Hurwitz...

Page 1

Download Results (CSV)